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A two-phase 2D model that combines the volume of fluid (VOF) method with
implicit staggered finite volumes discretization of the Navier–Stokes equation is
presented. Staggered finite volumes are developed on the basis of nonconforming
Crouzeix–Raviart finite elements, where all components of the velocity lie in the
middle of the element edges and the pressure degrees of freedom are found in the
centers of mass of the elements. Staggered finite Volumes extend marker and cell
(MAC) regular staggered grids to unstructured mesh. A linear saddle point prob-
lem, resulting from either the discretization or the Newton method, is solved for all
unknown pressures and velocities. Interface is represented with spline interpolants
which follow the VOF distribution. Adaptive mesh refinement is used to obtain a high
level of uniform refining at the domain of dependence of the interface. The aligned
grid is obtained by irregular refining of the cells which are intersected by a curve.
The boundaries of its elements coincide with the slope segments going through the
intersections of the curve with the underlying regular elements boundary. The de-
formable computational grids are used only to discretize the Navier–Stokes equation.
The advection of volume fractions is done on the advection mesh, which corresponds
to highest regular refining on the computational grid. Approximation of the surface
tension on spline interpolants offers a straightforward way to describe correctly the
pressure jumps on interface-fitted staggered grids. This allows deletion of the anoma-
lous currents around a statical bubble and their effective reduction in real simulations.
On the aligned grid, the continuity of the viscous stress is modeled exactly due to
the finite volume approach. Using the proposed numerical techniques, single bubble
rise is analyzed. c© 2001 Academic Press
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1. INTRODUCTION

In order to solve two-phase problems with immiscible fluids, incompressible Navier–
Stokes equations are necessary. The difficulty arises from the presence of moving sharp
fronts where pressure and velocity derivatives may have jump discontinuities. Numerous
methods describing the interface and its propagation are often based on similar discretiza-
tions of the basic conservation laws. Here, we must deal with two principal directions,
surface trackingandsurface capturing, since our model can be seen as a hybrid of both.
Excellent overviews of the interface methods are given by Hyman [31], Unverdi and Tryg-
gvason [66], Sussman and Smereka [63], Rider and Kothe [54], Kothe [33], Rudman [60,
61], and Scardovelli and Zaleski [57].

Surface-trackingmethods explicitly treat the interface as a discontinuity. Usually, it is
specified by an ordered set of marker points, connected by an interpolation curve. The
markers are advanced in the Lagrangian manner and then redistributed to obtain the best
resolution of the interface (see Glimmet al. [25], Daly [19], and Popinet and Zaleski
[45]). With the front-tracking method of Unverdi and Tryggvason [66], the interface is
represented by aninterface grid. Density and viscosity fields are computed from the inter-
face grid position with the help of smooth indicator functions. Free Lagrangian methods
do not treat the basic equations and the interface propagation separately. Instead, they
advect the computational grid itself by the Lagrangian equations (see Fyfeet al. [21]).
Galaktionovet al. [23] apply efficiently a front-tracking technique in strongly deformable
geometries.

Surface-capturingmethods are implicit with respect to the interface: by using special
functions for the description of the multiphase distribution, they do not need the exact
interface position to discretize the governing equations. The first volume-tracking methods
are due to DeBar [20], Hirt and Nicholls [29], and Noh and Woodwards [43]. The volume of
fluid (VOF) method [29] uses a volume fraction distribution (vof) to represent the two phases.
The level set approach due to Osher and Sethian [44] uses a so-called level set function
to implicitly capture the front. Both methods handle the complicated interfaces, including
their merging and break up, more easily than the surface-tracking methods. The level set
method advects the interface by solving a partial differential equation (PDE) for the level
set function. Considerable efforts have been devoted to creating accurate advection schemes
based upon interface reconstruction for the volume-tracking methods. An exhaustive review
of this subject is Rider and Kothe [54].

To date, the first volume-tracking methods have used three different types of interface
reconstruction: piecewise linear approximation across cell faces [20], piecewise constant
(“stair stepped”) approximation [29], and piecewise constant, the SLIC technique [43].
Following Youngs’ second-order-accurate 2D method [71] and first-order 3D method [72],
the most popular piecewise linear interface calculation (PLIC) methods reconstruct free
surfaces of arbitrary geometry locally within each interfacial cell based on the estimation
of the normal to the interface. The locality of the method results in the discontinuity of
the interface on the cell edges. The SURFER code [26, 34, 57] computes the fluxes across
the cell boundaries from thesplit Lagrangianpropagation of the first-order PLIC interface.
The volume-tracking algorithm of Rudman [60] develops the concept of Zalesak’s flux-
corrected transport without interface reconstruction. The method is intensively tested against
the SLIC, Hirt–Nichols VOF, and first-order Youngs method. The FLAIR method of
Ashgriz and Poo [3] is based on a linear reconstruction, continuous at the face between
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two adjacent interfacial cells. Second-order improvement of the FLAIR is discussed by
Kim and No [51], where a parabolic curve holds both face slops and vof in interfacial cells.
An approach similar to [3] is extended by Jeong and Yang [32] to 2D quadrilaterals ele-
ments. They also develop a geometrical smoothing algorithm which results in a piecewise
linear continuous reconstruction specially adapted to filling processes. High-order linear in-
terface reconstructions and advection methods have been developed by Pilliod [52], Puckett
et al. [47], and Rider and Kothe [54]. Rider and Kothe also extend Youngs method [72] to
calculate the normal to unstructured meshes, based on the linear square sense approach of
Barth [11]. The accuracy of this method is compared with the second-order-least squares
minimization [47, 52] and a second-order-accurate iterative procedure due to Swartz [65].
The Swartz method is applied in a new full remapping time integration scheme [41, 42],
which represents a 2D illustration of recent enhancement to multidimensional volume-
tracking advection schemes on both structured and unstructured grids. Very recently, Gao
[22] has applied a volume-tracking technique to 3D unstructured tetrahedral collocated
mesh.

A common problem of all methods is an accurate representation of the surface tension
force which is concentrated on the interface. Often, the surface tension term is computed
either with the continuum surface force (CSF) model of Brackbillet al. [13] or with the
continuum surface stress (CSS) formulation of Lafaurieet al. [34]. The CSF represents the
surface tension effects in a form of a smoothly varied volumetric force. Different methods
for estimating the curvature, normals, and the surface delta function required for CSF
model have been developed [2, 33, 61, 69]. The sensitivity of the results to the choice of
smoothing kernels and the interface orientation, as well as to degree of smoothing, is not
yet well understood. The CSS method [26, 34, 57] requires only the computation of the
normals to the interface.

An inaccuracy caused by these methods manifests itself, in particular, in well-known
anomalous currentsaround the stationary bubble (see [34, 57, 61, 69]). In simulations
with the relatively strong surface tension effects, and especially in the presence of large
density/viscosity jumps, the currents can progressively grow and destabilize the solution
(see [2]). The currents can be reduced due to appropriate smoothing in the CSF and the
CSS methods, but no remedy is found to delete them with these approaches. An alternative
way is to model a correct pressure jump at the interface. In modeling the surface tension
force on interface interpolants, cubic splines [19, 21, 45] have been found smooth enough
to ensure an accurate discretization of the curvature. Popinet and Zaleski [45] annihilate
the spurious currents due to taking into account, in addition to spline interpolation which
goes through a set of marker points, the interface position while discretizing the pressure
gradients.

An account of the interface position is rather delicate if the grid is fixed. Also,
Cowardet al. [17] show that commonly used simple viscosity averages significantly re-
duce the accuracy of VOF models at the interface. In order to introduce correctly the
pressure jumps and the continuity of the viscous stresses, the remedy can be found in de-
formable grids, where element boundaries lie along the reconstructed interface. In combi-
nation with the VOF method, this approach was developed by Sato and Richardson [56] and
Mashayek and Ashgriz [40]. In Sato and Richardson’sfringe element generation method,
the grid lies along a piecewise linear, continuously reconstructed interface which preserves
the vof distribution. Locket al. [38] and Barth and Sethian [12] use pseudo-concentration
and level set techniques, accordingly, to track the front. Triangular mesh naturally provides
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a smooth front and an advection of the continuous and monotonic level set function is
performed through the fixed finite element mesh.

Deformable grids induce the development of multiphase finite element schemes and
finite volume schemes based on finite element approximations. In the works cited above,
collocated discretization based on penalty function formulation is usually chosen [32, 38,
40, 56]. A special discontinuous piece-wise linear pressure approximation is used to model
a pressure jump in [38]. Gao [22] employs a special mixed FEM formulation to obtain a
stable discretization of Navier–Stokes equations. The outcome of front aligned grids is that
the boundary conditions at the front are satisfied accurately without any Lagrangian moving
of mesh system.

Summarizing the aforesaid, we emphasize two main factors in our work, which define
the success of interface flow simulations: the correct approximation of surface tension force
and the correct interface boundary conditions. In the first, we use the spline interpolants.
In the second, we consider the grids aligned to the interface, including the use of unstruc-
tured (locally, near the interface) grids and finite volume discretization of Navier–Stokes
equations. We keep in mind that all the algorithmic constructions have to be extended to
complicated geometries and to 3D. Our choice of the algorithmic path is supported by the
possibilities which offer the simulation tool UG [5, 50] to introduce any degrees of freedom
while discretizing on adaptively refined and/or unstructured grids in 2D and 3D cases.

We propose to combine a VOF method withstaggered finite volumesfor Navier–Stokes
equations. We develop this discretization for two-phase Navier–Stokes equations based on
the nonconforming Crouzeix–Raviart finite elements [18]. The velocity degrees of freedom
lie in the middle of the element edges. The pressure degrees of freedom are located in the
centers of mass of the elements. Since pressure points do not lie on the element boundaries,
approximation of the surface tension on spline aligned grids enables us to model correctly
a pressure jump, to delete the anomalous currents around a statical bubble, and to reduce
them effectively in real simulations. The benefits of using the VOF are that it tracks the
interface topology and spline interpolation is “attached” to the obtained vof distribution.
The construction of a cubic spline which preserves volume fraction distribution is presented.
Three different types of computational grids are combined to track the pressure and velocity:
uniform, adaptively regular refined, and interface aligned grids. Time integration of vof
distribution is accomplished with a SURFER approach [26] on a so-called advection mesh,
corresponding to a highest regular level of the computational grid.

The paper is structured in following way. In Section 2, the basic relations are given. In
Section 3, interface reconstruction is presented. In Section 4, computational and advection
meshes are constructed. Staggered finite volumes are introduced in Section 5. Different
transgrid interpolations are discussed in Section 6. Laplace law is modeled in Section 7.
Rise of single bubbles is analyzed in Section 8.

2. BASIC EQUATIONS

Assume that two immiscible phases, say liquid and gas, occupy a 2D rectangular domain
Ä. The velocity fieldEu = (ux, uy) and the pressurep of each phase obey the incompressible
Navier–Stokes equation

ρ
∂ Eu
∂t
+ ρ∇ · (Eu⊗ Eu) = −∇ p+ ρ Eg+ EFs +∇ · (2µD), D = 1

2
(∇ Eu+∇ t Eu); (1)
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∇ · Eu = 0. (2)

In bulk,ρ = {ρl , ρg} is the density andµ = {µl , µg} is the viscosity. For immiscible phases
they are constant along a particle path; therefore the following relations hold:

∂ρ

∂t
+ Eu∇ρ = 0 ; ∂µ

∂t
+ Eu∇µ = 0. (3)

The surface tension force acts on the interfaceS between the fluids. If the surface tension
coefficientσ is constant, the surface tension force per unit areaEFs is defined as

EFs = σκEnδS. (4)

Hereκ(Er ) = −(∇ · En)|Er is a local curvature, taken positive if the center of curvature is
in the gas phase;En(Er ) is the unit normal toS at Er , directed from the continuous phase
into the gas phase. DistributionδS is concentrated on the interfaceS. A precise numerical
computation of the curvature is difficult unless the interface is represented by a sufficiently
smooth curve, e.g., twice continuously differentiable. Assuming thatδS does not vary in a
direction normal to interface, Lafaurieet al. [34] have shown thatEFs can be included into
Eq. (1) in the momentum-conserving form

EFs ≈ −∇ · T , T = σ(I − En⊗ En)δS. (5)

In practice,δS is often approximated asδS=‖∇C‖ ; ‖ · ‖ denotes the Euclidean norm of a
vector. The finite difference “filters” to smoothC before its uses in (5) are discussed in [34,
57].

The velocity is assumed to be continuous across the interface: [Eu]S = 0. Here and below,
[ψ ]S = ψl − ψg denotes the jump across the interfaceS. Momentum conservation supplies
the additional interface conjunction condition

[2µD · En− pEn]S = EFs. (6)

At the boundary of the physical domainÄ, we impose either no-slip or free-slip boundary
conditions.

3. INTERFACE RECONSTRUCTION AND ADVECTION

3.1. Linear Interface

With the volume of fluid approach, we represent the distribution of phases byvolume
fraction Ck of the gas phase in cellk. The PLIC methods [37, 54, 71] uniquely define the
interface in each cell with 0< C < 1 by a slope segment, which is perpendicular to a given
normalEn:

En ≈ ∇C. (7)

If the domain of dependence of the given interfacial cell is refined regularly,∇C can
be computed with a nine-point finite difference stencil in 2D. Following [52, 54], the
method for normal estimation which reproduces a line (a plane) exactly, regardless of its
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orientation with respect to fixed coordinate system, is referred to as second-order method.
With this criterion, PLIC methods based on finite difference approximation of the normal
done separately for each cell are only first-order accurate. When the accuracy and the
convergence of the different algorithms are studied to calculate the normal [54], the first-
order method (referred to as Youngs’ second method in [54]) has better accuracy on coarse
grids than the higher-order methods. The results presented in this paper are obtained with
the first-order finite difference normal estimation.

3.2. Cubic Spline Interpolant

Piecewiseparabolic interface reconstructions which preserve also the volume fraction
distributions are usually drawn through only a local set of neighbors (see 5× 5 block in [1],
two neighboring cells in [51], 3× 3 block in [53]). In the last work, the volume conservation
is ensured in least-squares sense. Mossoet al. [42] draw a circle going through midpoints
of three neighboring interfacial segments. At the same time, cubic splines [19, 21, 45],
going through afixed position of marker points(xk, yk), are found to be smooth enough
to ensure the accurate numerical computations of the curvature in (4). The third-order
polynomial parametric function(x(s), y(s)), x(s) ∈ C2, y(s) ∈ C2, has the following form
in the interval between(xk−1, yk−1) and(xk, yk), k ≥ 1:

ψ(s) = Mψ
k−1

6Lk−1
(sk − s)3+ Mψ

k

6Lk−1
(s− sk−1)

3+
(
ψk

Lk−1
− Mψ

k Lk−1

6

)
(s− sk−1)

+
(
ψk−1

Lk−1
− Mψ

k−1Lk−1

6

)
(sk − s). (8)

Here,ψ(s) denotesx(s) or y(s); sk is a value of the parameters at point(xk, yk): sk =∑k
j=1((xj − xj−1)

2+ (yj − yj−1)
2)

1
2 and Lk−1 = sk − sk−1. The continuity of the first

derivatives at the points (xk, yk) supplies the necessary linear equations to determine the
second derivativesMx

k andM y
k .

In VOF models, the points lying on the interface are unknowna priori. Our basic idea is
to construct a cubic spline interpolant (8) which exactly cuts the phase distribution in each
interface cell. Assume that the spline intersects the edges of ah× h interfacial cellk with
the boundary∂6 at pointsC = (xk−1, yk−1) andD = (xk, yk) (see Fig. 5). Suppose further
that we knowwhich edges should be cut by the interface but we do not knowwherethe
interface cuts them. Then one of the coordinates of each cross point is fixed. Letξk denote
the unknown coordinate. Following [45], we use the Stokes theorem to express the volume
Vk of the cellk cut by the cubic spline as

Vk =
∮
∂6

x dy. (9)

This is schematically shown by the sequence of pointsC,D,E,F,C in Fig. 5. Our purpose
is to satisfy the volume conservation relations

Vk = Ckh2, k = 1, . . . , N. (10)
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If function
∫ sk

sk−1
x(s)y′(s)ds is determined from (8),Vk is written in terms of the unknowns

{Mx
k−1, Mx

k , M y
k−1, M y

k , ξk−1, ξk}. Together with the conditions of the continuity of the first
derivatives at the points (xk, yk), relations (10) supply 3N nonlinear equations to find 3N
unknowns,{(Mx

k ,M y
k , ξk), k = 0, . . . , N − 1}, in the case of the self-connected interfaces

considered in this paper. Otherwise, additional boundary conditions should be imposed
for the derivatives of the cubic spline at the boundary points (see [46]). When we solve
this nonlinear system with the fully convergent Newton method [46], the Jacobian can be
computed analytically. Two main problems concerning the solution should be emphasized.
First, the solution can go outside the cell along the given edge. In this case, it does not
keep the phase volume in the given cell but spreads it between two (or more) neighboring
cells. If we encounter this situation, we accept the solution lying inside the interfacial cells
that minimizes the residual of the nonlinear equations. This is in some sense similar to
least-squares approximation to the solution in this situation.

Second, the solution of the nonlinear problem may or may not be unique and a special
criterion should be used to fix one of the solutions. An example can be viewed in [56],
where a continuous linear front reconstruction is uniquely defined due to a special fixing
of the “interface contact” node at a no slip wall. We discuss in Section 7 how we fix the
the solution in the case of the axisymmetric 2D bubbles where for any choice of the start
point at the “nose” interfacial cell, the solution described just above can be found. If the
second derivatives(Mx

k ,M y
k ) are set equal to zero, the solution of the nonlinear system

(10) corresponds to acontinuous linear interfacereconstruction which maintains the phase
distribution. However, the same solvability problems still remain.

Below we describe how we define which edges of the interfacial cells should be cut by
the continuous interface. Assume here that the interface should separate the domain into
two subdomains (insideandoutsidethe fluid) corresponding toC = 1 andC = 0. First, we
construct the discontinuous linear interface with PLIC. Then, a preliminary parametric cubic
spline, referred to asspline A, is drawn through the centers of the linear–slope segments. The
cross pointsAk of spline Awith the cell edges determine the pointsBk(x0

k , y0
k) (see Fig. 1).

The edges whereBk lie are those that are assumed above to be cut by the interface. A mass

FIG. 1. Sketch for splines A and B. Spline A goes through the middle points of the PLIC interface (A0, A1,
A2, . . .). Spline B goes through the intersections of Spline A with the grid’s elements boundary (B0, B1, B2, . . .).
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violating cubic spline, referred to asspline B, goes through the pointsBk and provides an
initial guess(Mx,0

k ,M y,0
k , ξ0

k ) to cubicspline Cwhich should preserve a phase distribution.
We construct thespline Awith the following algorithm:

• Choose a clockwise or counterclockwise order of the passing the interface. Assume
here a counterclockwise direction where the gas phase (C = 1) is on the left.
• Reconstruct PLIC interface in each interfacial cell. With respect to chosen direction,

denote its start point asps and end point aspe. Mark all interfacial cells with “0.”
• Choose arbitrarily an interfacial cell where thespline Ashould start.
• I. Denote the cell under consideration asc.c (current cell). Mark it with a “1.”

Include the midpoint of the PLIC interface in the current cell in the subsequent points used
to construct thespline A.
• II. To find the next point, analyze the neighbors of the current cell.

1. I f the interfacial neighbor shares with the current cell an edge wherepe(c.c) lies
and if it is marked with “0,” go toI (see Fig. 2a).

2.Else, examine the neighbors which share the edges where neitherps(c.c)nor pe(c.c)
lies. If there is an interfacial neighbor marked with “0,” go toI (see Fig. 2b).

3. Else, look for an interfacial cellf.c (find cell) that satisfies the following four
conditions:

(a) It is marked with “0.”
(b) The gas phase is at the left (because of chosen counterclockwise direction) from

the line connecting thepe(c.c) and ps( f.c).
(c) ‖pe− ps‖ is smaller than any prescribed valueeps.

FIG. 2. Sketch for construction of spline A. (a) The interfacial neighbor shares with the current cell an edge
where pe(c.c) lies. (b) The interfacial neighbor shares with the current cell an adge where neitherps(c.c) nor
pe(c.c) lies. (c) Next cell is a neighbor.
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(d) ps( f.c) is closest tope(c.c) among the points which satisfy conditions (a)–(c).
If such a cell is found, go toI (see Fig. 2c).

• III. The algorithm stops when no cell is found inII. 3.

Let us comment on the algorithm above. If each interfacial cell has two or more inter-
facial neighbors, the algorithm always finds a subsequent cell to be visited by the spline
in II. 1–II. 2. A case of only two interfacial neighbors is most frequent when the interface
is adequately smooth (see, e.g., [3]). Some advection algorithms constrain themselves to
a phase transfer from the partially filled cell to the empty cell (see, e.g., [51]). Interface
smoothing is assumed only inII. 3, which supposes that if the cell has no suitable interfacial
neighbors or all of its neighbors are already visited, the next cell reasonably can be found
in a given radiuseps. In case of a self-connectedspline A, the algorithm ends successfully
if the first cell satisfies the conditionsII. 3.b-3.d. In cases when the gas phase consists of
more than one disconnected part, start points lying at the interface of each part have to be
chosen and the algorithm should be done for each part separately (see Fig. 3g).

4. COMPUTATIONAL AND ADVECTION GRIDS

We refer to a grid where basic equations are discretized and solved as acomputational
grid. The grid where time integration for vof is accomplished is referred to as anadvection
mesh. The regular virtual advection mesh, finer than the underlying regular computational
grid, was also used by Rudman [61]. In our work, the computational grid is the finest grid
of the hierarchy which can be composed from uniform, adaptively refined, and/or aligned
grids. The advection mesh corresponds to the highest regular refining on the computational
grid. Conceptually, the refinement levels of the advection mesh and of the computational

FIG. 3. Phase distributionC corresponds to circleR= 0.25 except in cases (d) and (g). One (a) and two
(b) levels, adaptively refined grids. (c)Spline Baligned grid, constructed over one adaptive level. (d–f) PLIC
aligned grids. (d)C corresponds to a square. Note that each “edge” along a circle in (e) hides the grid element.
(g) Interface aligned grid fitted tospline Bin case of bubble breaking up.
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grid can be chosen independently. The transgrid operators discussed here and in Section 6
provide any necessary interpolations of the velocity from the computational to the advection
mesh andC field interpolations, conversely.

4.1. Computational Grids

4.1.1. Adaptive refinement near the interface.Adaptive mesh refinement (AMR) be-
comes quickly popular in multiphase methods [12, 54]. Recently, Jeong and Yang [32]
adopted adaptive refining through the refinement and mergence of elements on a quadrilat-
eral mesh. Greaves and Borthwick [24] developed a panel division or removal of elements
on a Cartesian mesh, dependent on the vorticity magnitude. M. Sussmanet al.extended an
adaptive projection method to hierarchy of adaptive nested regular grids. In their work, the
cells where the curvature exceeds a prescribed threshold were refined. Our purpose was to
minimize the computational expense while maintaining a high level ofuniformrefining at
the domain of dependence of the interface. Our demand of the uniform refining comes from
the use of the finite difference normal estimation in the element centers and corners. This is
not required in the reconstruction algorithms designed on the unstructured grids. Moreover,
we want to exclude at the present stage of a work with the aligned grids an additional
error which could appear from the approximations between the differently refined adaptive
subdomains. Also, the advantages of the adaptive refinement could be multiplied should
the second-order interface reconstructions be used.

Assume thatC is defined on aregular base mesh l0 with step sizeh equal to 2−l0. Consider
its elementk. Our refinement criterion is if‖En(Er )‖ is different from zero for some cornerEr
of the given elementk, we mark the elementk itself for regular refinement, as well as its
neighbors which contain the given nodeEr . The regular marked element is subdivided into
four regularsonelements. When all regular refinements are done, some irregularly refined
elements are placed in their neighborhood to guarantee the closure of the grid (see Figs. 3a
and 3b).

The quantity of gas phase inside the finer element is estimated as the area of its intersec-
tion with the PLIC polygon constructed inside a father element. Since the vicinity of any
interfacial cell is regularly refined, the adaptive refinement procedure can be applied anew.
After repeating itladap times, we obtain a hierarchy consisting ofladap adaptively refined
grids. Here,ladap takes any prescribed or dynamically estimated value. The procedure re-
sults in a smooth expansion of the refined layers from the maximal adaptive level to basic
level.

4.2. Interface Aligned Grid

We are not making contrasts between aligned grids and AMR. On the contrary, we
underline that these approaches supplement and amplify each other and we use them both.
There are examples when AMR alone cannot help to overcome the difficulties, for example,
in the case of Laplace law. The idea of an interface aligned grid is to completely separate
the phases by the boundaries of the geometrical elements. This is fulfilled if the element
face should lie along the reconstructed interface (see Fig. 3d). If the grid were aligned
with the PLIC, very narrow elements with large angles or high aspect ratios would appear
following closure of the grid because of the discontinuity of the reconstruction (see Figs. 3e,
3f). When the interface is represented by a smooth curve, its piecewise approximation by a
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slope segment going through the intersections of the curve with the grid’s elements boundary
gives rise to such an aligned grid (see [CD] in Fig. 5). The aligned grid is obtained with the
irregular refinement of the cells which are intersected by a curve. We refer below to this
simple grid adaptation to the front as “splinerectifyinggrid” (see Figs. 3a–3c and 3g).

The spline aligned grid may happen to contain “bad” elements which deteriorate the
performance of the solution procedure. Similarly to [56], we have applied a simple remedy:
two nodes merge together if the distance between them is smaller thanεh. Typically, we
have experimented withε < 0.1. More effective methods are used in [40], where the internal
nodes have to be moved in order to improve the grid properties. The criteria on the lengths
of the cells proposed very recently in [23] present the possibility of covering a region with
a strong curvature by small elements.

4.3. Time Integration on Advection Mesh

Let initial conditionsEu0 and p0 be given att = t0. By using the initial distribution
C0, the first approximation to the solutionEu1t is computed. Then, with the mean ve-
locity 1

2(Eu0+ Eu1t ), C0 is advected to its new positionC1t/2. The solutionEu1t is recal-
culated then withC1t/2. ThenCt+1t/2 is used to discretize the governing equations in
the time interval(t, t +1t). In particular, deformable computational grids correspond to
Ct+1t/2. In numerical experiments with the rising bubbles we advanceC on the regular
advection mesh, using a 2D geometrical split approach similar to one implemented in the
SURFER code [26]. The advection mesh has a space steph = 2−(l0+ladap), corresponding
to the maximal regular refining of the neighborhood of the interface on the computational
grid. In the case of the aligned grids, velocity is projected first on the underlying mesh
(uniform or adaptively refined), with help of the same transgrid operators as for solution
procedure. Near the interface where the advection schemes are really active, no further
velocity interpolation is needed. When the advection scheme needs a divergence-free ve-
locity field outside the interface region, the interpolation to the insufficient point is done as
follows.

Irregular refined elements are formally replaced by four regular son cells. Requiring
the velocity components lying on the edges of the new cells to be divergence-free in the
sense of (11), they are locally computed from the velocity solution inside this element.
This reconstruction from the irregular to regular sons is based on the relation (21). Final
interpolation inside regularcoarsecells lying on the different levelsl , l0 ≤ l < l0+ ladap,
is done with the approximations [37], inx direction forux and iny direction foruy. This
approximation is piecewise constant along each edge and preserves the continuity property
(11) for son elements. They are also used in [61] to interpolate the solution from the staggered
computational grid to finer advection mesh.

When new phase distribution is computed on the advection mesh, the mesh may be
coarsened to obtain a new hierarchy of the adaptively refined grids. In practice we proceed
as follows. First, we projectC on the base levell0 and consequently construct the adaptively
refined grids as described above. Using again the regular refining near the interface, the
volume fractions on the highest regular gridl , l = l0+ ladap, are redefined as a copy from
the advection mesh. In this way, they correspond to the computed solution without any
approximations. The projection on the base level enables us to reconstruct the adaptive
grid without coarsening of its previous elements. Whenladap> 1, C is redefined on the
underlying adaptively refined grids as a subsequent projection from the finer level. While
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using the flux based time integration schemes on unstructured grids, extension of CFL
criterion [22, 32] can lead to very small time steps because of the presence of the elements
with small characteristic lengths.

5. DISCRETIZATION OF BASIC EQUATIONS

5.1. Staggered Finite Volumes

To approximate Navier–Stokes equations with surface tension, we use finite volume dis-
cretization based on the nonconforming Crouzeix–Raviart finite element [18]. The finite
volume approach helps us to separate the phases. Moreover, it deals with the fluxes directly
and in this way brings more control over them than the finite element approach. Similar
to the well-known staggered marker and cell distribution [28] of the discretization points,
the unknown pressure is located at the center of the element and the velocity variables are
found in the middle of its edges. However, in contrast to the MAC model, each edge contains
bothcomponents of the velocity. This approach enables us to treat the basis equations in the
same manner on structured (uniform) or unstructured grids. The velocity is considered to be
piecewise linear (or bilinear) with respect to the so-called “rotated element” [48], which con-
nects the centers of the edges. The pressure is considered to be piecewise constant over the
element. The theoretical estimates [9, 18, 48] show that such approximations of the Stokes
equation are stable; i.e., they satisfy the so-called discrete Babuska–Brezzi–Ladyzhenskya
condition (BBS) and have the second-order convergence rates for the velocity components
and first-order for pressure components. When the approximation of the convection term in
the Navier–Stokes equation does not spoil the properties of the stiffness matrix, needed for
stability, the above results are also extended to Navier–Stokes equations. This discretization
can be generalized also to 3D case following [9]. Unlike with a collocated approach [59] or
a penalized formulation, since no additional coupling between the pressure and the velocity
is needed [see (11), (20)], the continuity equation is satisfied exactly. This enforces mass
conservation in advection schemes, especially if they are flux-based. When the element
faces lie along a front, the correct description of pressure jumps follows since pressure
discretization points are not found on the element boundary. Below we briefly view the
main steps of the discretization procedure.

• With the finite volume method, mass conservation Eq. (2) is integrated over a control
volumeCVp(Er )which coincides with the geometrical element with the centerEr . The Gauss
theorem reduces the integration to a boundary integral over∂CVp. Its approximation with
quadratures involves the velocity variablesEu(i p) lying on the boundary of the element (see
pointsi p0-i p3 in Fig. 4) as

∑
i

(Eu · Esp)|i pi = 0, i pi ∈ ∂CVp. (11)

Below,nα denotes the outer unit normal to the boundary segment∂CVα of a control volume;
sα is equal tonα scaled with the length of the segment.

In order to discretize the Navier–Stokes equation (1), we integrate it over control volumes
CVu(Er ) now constructed for each velocity discretization pointEr . The control volume is
subdivided into the subcontrol volumesSCV; eachSCVbelongs only to one geometrical
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FIG. 4. Sketch for staggered non-uniform grid.

element (see Fig. 4). With the help of the Gauss theorem we represent Eq. (1) as

ρu

∫
CVu

∂Eu
∂t
+ ρu

∮
∂CVu

VEnu ds+
∮
∂CVu

{p− 2µD}Enu ds

= ρu

∫
CVu

Eg+
∫

CVu

EFs; V = Eu⊗ Eu. (12)

• The pressure is assumed to be an elementwise constant function. Densityρ and
viscosityµ are computed as a volume averaging inside each geometrical element:

ρ = Cρg + (1− C)ρl ; µ = Cµg + (1− C)µl . (13)

The densityρu(Er ) is derived from (13) by averaging over two subcontrol volumes sharing
the given velocity discretization pointEr . This averaging rises from a nonconservative form
chosen here. The conservative formulation requires a special effort to compute correctly
the mass fluxes in case of large-density ratios on the boundary between the control volumes
(see [61]).

Spatial velocity approximations are fulfilled on so-calledrotatedelements [48]: the cor-
ners of the rotated element coincide with the velocity discretization points (see Fig. 4). Let
the finite element (f.e.) approximation of arbitrary scalar or vector fieldφ inside or outside
a given triangular/quadrilateral element be written as

φ f.e.(Er ) =
m∑

j=1

Nj (Er )φ j . (14)

Here,Nj are standard linear/bilinear basis functions;m is the number of the element corners.
While using (14), we will distinguish between f.e. interpolation over the geometrical element
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and f.e.rotated interpolation when basis functions correspond to the rotated element. In
both cases, the gradients ofφ are represented as

∇φ f.e.(Er ) =
m∑

j=1

∇Nj (Er )φ j . (15)

The rotated f.e. interpolations (14)–(15) are used to compute the velocity and its gradients at
integration points lying on the∂CVu. Note that in the case of the interface aligned grid, when
no phase mixture is presented by the relations (13), Eq. (12) with the relations (14)–(15)
enables us to satisfy the tangential conjunction condition (6) exactly on the reconstructed
interface. In particular, stationary linear two-phase Couette flow is exactly described for
any viscosity ratio and any inclination of the interface, provided that the interface is exactly
reconstructed.
• If neither the equation of the interface nor its curvature is known,EFs can be applied

in the form (5) on any computational grid:∫
CVu

EFs = −
∮
∂CVu

T · Enu ds. (16)

Following [34], we approximateδS as|∇C|. The components of the tensorT at the inte-
gration points are then computed with f.e. relations (14) from their nodal values, obtained
in the corners of the finest regular element to which the point belongs. If the interface is
represented by a parametric spline(x(s), y(s)), the surface tension force over the interface
segment(A,B), lying inside the control volume (see sketch for Frenet formulas in Fig. 5),
can be computed as

∫
CVu

EFs =
∮ B

A
σκEn ds= σ(EtB −EtA); Et = (x′(s), y′(s))

(x′2(s)+ y′2(s))
1
2

. (17)

In the case of the staggered aligned grid, the intersection points of theCVu with a spline
coincide with the corners of the grid elements by the construction. No extra effort is needed
to correctly discretize the pressure jump, compared to the situation that occurs in this case
on the regular grids (see [45]).

FIG. 5. Sketch of bisection of spline with control volumeCVu(Er ).
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5.2. Time Discretization and Discussion

The velocity in the continuity equation (11) is usually treated with an implicit Euler time
approximation. Letψ stand forp, D, or V in (12). Then, our time discretization can be
written in a general form as

ψ = α+ψ t+1t + α−ψ t . (18)

Here,α+ = 1, α− = 0 for the implicit Euler scheme and vice versa for the explicit Euler
method;α+ = α− = 1

2 for the Crank–Nicolson technique. WhenV(Eu) is approximated
with the implicit schemes, a nonlinear system of equations arises. We solve it with the
Newton method using a linear search technique. The Jacobian of the system is analytically
computed without any linearization of the convective term. The initial guess is the solution
obtained at the previous time step or its approximation on a new computational grid. As an
alternative treatment of the convection term, we linearize it with respect to time:

Vt+1t = Vt + ∂V
∂Eu

t ∂Eu
∂t
1t; ∂Eu

∂t
≈ Eu

t+1t − Eut

1t
. (19)

The second-order time linearization scheme (19) preserves the stability properties of the
implicit approach and avoids the necessity of solving the nonlinear system of equations.

The capabilities of staggered finite volume discretization have to be tested, first, in one-
phase simulations. Because of space restrictions, numerical rate of convergence is consid-
ered here only for one of examples from [6]. The velocity fieldEu0 = (−∂ψ0/∂y, ∂ψ0/∂x),
ψ0 = π−1 sin2πy sin2πx is initialized inside the unit square domain. The velocity is equal
to zero at the boundary. Two cases are considered: Stokes flow (µ/ρ = 0.1, convection term
is dropped) and Reynolds number 100 (µ/ρ = 0.01). Since no upwind approximation is
included in this paper, inviscid flow is not considered. In each case, we compute solutions on
the regular grids (h = 1/2n, n = 4, . . . ,8) with1t = h/2 (CFL= 1/2). Time discretiza-
tion of the pressure and the diffusion terms is done with the Crank–Nicolson scheme; the
convection term is described with the relations (19) in the case of Re= 100. Table I displays
the order of the velocity approximation,

√
U2h,4h/Uh,2h, measured at timeT = 0.5. Here,

Uh,2h is theL2 norm of the pointwise difference between the velocity solution obtained on
the grid with step 2h and the velocity projected from the finer grid. Velocity projection is
done with the relations (22). We observe asymptotical second-order convergence, which
shows that we are in desired regions of stability and asymptotic approximations, at least in
moderate Reynolds numbers.

TABLE I

Convergence Results for Single Vortex

Case 16–32 Rate 32–64 Rate 64–128 Rate 128–256
Stokes 6.41e-4 1.99 1.62e-4 1.99 4.07e-5 1.99 1.03e-5

Re= 100 2.78e-2 1.72 9.39e-3 1.91 2.59e-3 1.98 6.60e-4
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5.3. Solution Procedure

At each time step, the discretization described above leads to a saddle-point problem
(SPP) for velocity and pressure unknowns:(

A B
Bt 0

)(
v

p

)
=
(

f
0

)
. (20)

Matrix A describesEu-Eu coupling of the discretized momentum equation,B addresses its
Eu-p counterpart; matrixBt denotes the discretization of the continuity equation. Although
the SPP brings more difficulties to the solution procedure compared with the solution of
symmetric positive definite systems (SPD), they are well developed and the effectiveness
of the modern state-of-the art algorithms is compared with the ones for SPD systems [7].
In particular, the multigrid (MG) approach [8, 27, 68, 70] has been proven to be very
effective for SPP; i.e., its convergence rate does not depend on the discretization parameter
(number of unknowns) and the jumps of the coefficients, at least for “good” grids. The
“bad” grids, i.e., where the elements with big angles or high aspect ratios present, can
result in bad convergence rates of the iterative solvers. This is true for the SPD as well as
the SPP problem. There are approaches to overcoming this difficulty (algebraic multigrid,
block preconditioner depending on the anisotropy). In our computations we do not use such
sophisticated procedures but, rather increase the number of smoothing steps.

In our work we use the V-cycle of the MG as a preconditioner for BiCGstab method
[4, 58]. As the MG smoother, we use either SIMPLE transforming operator of Wittum
[70] or acollectiveGauss–Seidel technique following Vanka [67]. The prolongation of the
velocity component is done with the damped rotated f.e. relation (14). The prolongation
of the pressure component is constant elementwise. The restriction is computed as the
transposition to the prolongation in both cases. In order to reduce the residual about 106–
107 times, the typical convergence of BiCGstab observed in our computations was 5–10
iteration steps on uniform and adaptively refined grids and 15–30 steps on the spline aligned
grids, by using 1–4 pre- and post-smoothing iterations on each multigrid level. A comparison
of two solution techniques ([70] and [67]) in different real problems and in functions of
element properties is under study and will be reported in a separate paper.

6. TRANSGRID SOLUTION INTERPOLATIONS

Once the velocity fieldEut is computed, the phase fieldCt−(1/21t) is advanced toCt+(1/21t).
The new phase distribution requires the construction of a new computational grid unless it
is uniform. The discretization of the basic equations in the next time interval(t, t +1t)
requires the old solutionEut and, eventually,pt at the new discretization points. The old
solution can be interpolated from the previous computational grid or prolongated from a
coarse grid which is not altered between two time steps. We discuss now some transgrid
operators used in computations presented below.

6.1. Velocity Approximation

Assume that the velocity solution is given at the discretization points of some compu-
tational grid. The solutionEu(Er ) at an arbitrary pointEr can be computed by using the f.e.
relations (14) on the rotated element of the geometrical element whereEr lies. Then, the
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averaging is done over all geometrical elements to which the point belongs. Below, we use
this approximation scheme to interpolate the velocity from the old computational grid to
new discretization points. The continuity equation (11) will not be generally satisfied by
the interpolated solution on a new computational grid.

6.2. Divergence-Free Velocity Restriction

Consider some father element and the set of its son elements lying on the finer grid.
Assume that the velocity in discretization pointsErk of the son elements obeys (11). Since
any son velocity discretization point, not lying on the father boundary, belongs to two son
elements, the sum of the relations (11) over all son elements is reduced to the summation
over the son discretization points lying on the boundary∂CVp of the father element:∑

k

(Eu · Esp)|Erk = 0, Erk ∈ ∂CVp. (21)

We put the velocityEu, defined at the edge of the father element, as equal to the weighted
average of the velocity at son discretization pointsErk lying on the same edge:

Eu = 1∑
k ‖Esp(Erk)‖

∑
k

(‖Esp‖Eu)|Erk . (22)

Due to relation (21), the velocity (22) is divergence-free in the sense of (11) w.r.t. the
father element. Starting from the finest level and proceeding in this way, one can construct
divergence-free fields on all underlying levels. We use this projection to compute the stiffness
matrix on coarse grids required for the multigrid technique and to advance the phase field
on the underlying base mesh in case of the aligned grid.

6.3. Pressure Interpolation

We need the restriction of the pressure solution to coarser levels both for the multigrid
method and for its expansion to new discretization points. Projection of the pressure is sim-
ple: the arithmetical mean pressure value over all son elements is appropriated to their father.
In order to approximate the pressure in centers of new geometrical elements, we proceed as
follows. First, we approximate the pressure solution at the nodes of the old computational
grid as the arithmetical mean of the pressure values over all elements which share the given
node. Then, we project this nodal solution to all coarser levels. Once a hierarchy of new
grids is reconstructed, the nodal solution is interpolated from the finest unalterable level
into the son nodes with f.e. relations (14). The solution at the new discretization points,
i.e. the centers of new elements, is computed as an arithmetical mean value of the nodal
solution. The procedure is then successively repeated for subsequent finer levels.

7. LAPLACE LAW

The validation of the Laplace law for a stationary bubble represents a well-known test of
surface tension methods. At equilibrium, the pressure jump across the interface is related
to its radiusR according to (6)

pin − pout = σ

R
. (23)
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FIG. 6. Anomalous currents (b) on the grid (a) aligned with the exact circle. The surface tension force is
computed in momentum conserving form (16), (5).

Here,pin andpout are pressure values inside and outside the bubble. We setp̄in andp̄out to be
equal to a weighted mean value computed over all elements lying completely inside or out-
side the bubble; the weight coefficient is equal to the element area. Well-known numerical
artifacts, called in the literature “anomalous” or “spurious” currents around a macroscopi-
cally static bubble, are typical for VOF models. In order to demonstrate that the anomalous
currents originate from a bad approximation of the surface tension term, we consider the
two following experiments. The physical data are given in lattice units in this section.

First, we rectify a circle of the radiusR= 0.2, centered in the unit square, by acontinuous
linear interface. The aligned grid follows this reconstruction, as displayed in Fig. 6a. Both
fluids have the same densities and viscosities equal to one. The surface tension forceEFs with
σ = 1 is applied in both forms: conservative [(5) and (16)] and exact [(17)]. The amplitude
of the anomalous currents, max(‖Eu‖), and measurements of the Laplace law are given in
Table II. The behavior of the currents on the aligned, adaptively refined or regular grids
is similar when the relations (5), (16) are used: max(‖Eu‖) is proportional toσ/µl and it
varies weakly if the space resolution increases. This follows the same lines as the results

TABLE II

Results for a Static Bubble

Amplitude of the anomalous currents

EFs: rel. (16), (5) EFs: rel. (17)

h Exact circle Exact circle Spline B Spline C

1/16 0.0413 8.67× 10−9 1.00× 10−2 1.64× 10−3

1/32 0.0293 9.22× 10−9 6.00× 10−3 1.89× 10−4

1/64 0.0289 1.23× 10−8 1.76× 10−3 4.89× 10−5

Laplace law:( p̄in − p̄out)
R
σ
= 1

1/16 0.936 1.0 1.00282 0.999905
1/32 0.969 1.0 1.00087 1.000010
1/64 0.988 1.0 1.00019 1.000000
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in [34, 35] where the anomalous currents obtained with finite difference approximations of
relation (16) on uniform grids stay constant when space resolution increases. In this way,
one cannot benefit from the adaptively refined grids.

On the other hand, since the pressure gradient across the interface is correctly described on
the aligned grid where phase separation inside of a control volume is done by the boundary
between two elements, the anomalous currents vanish when relation (17) is used with
the exact curvature and exact values of normal vectorEn. Consequently, an exact pressure
distribution (23) is obtained in this case (see second column in Table II).

Second, we construct the cubic splinesB andC, corresponding to the volume fraction
distribution for a circleR= 0.2. In order to fixspline C, we iterate the solution of the
nonlinear problem until the curvature at the nose becomes equal to one at the neighboring
point. EFs is implemented then in the form (17) on the spline aligned grids.

Rudman [61] and Aleinov and Puckett [2] do not comment on how much the amplitude
of the currents is reduced with their approaches. Williamset al.[69] reduce them by factors
of 3 to 5, using an approach similar to [2, 6]. Table II shows that the amplitude of the
spurious currents is reduced by a factor of 20–500 onspline Cand by a factor of 4–10
on spline B, even on relatively coarse grids. The currents are better reduced in case of
the mass conservingspline C. In both cases, the current strength decreases with the spatial
resolution. These results confirm the ability of cubic spline aligned grids to represent the
surface tension accurately.

8. RISING BUBBLES

8.1. Dimensionless Parameters

The rising bubbles are often classified in terms of the following group of dimensionless
parameters: the Reynolds number Re, the Froude number Fr, and the Weber number We:

Re= ρl LU/µl , Fr= U2/gL, We= ρl LU2/σ, (24)

whereU is the steady state bubble velocity. On the other hand, the descriptions in terms of
the Reynolds, the E¨otvös numberE0, and the Morton numberM are also widespread:

E0 = gρl d
2/σ, M = gµ4

l /ρlσ
3. (25)

Here,d = 2R, R being the bubble radius. In order to introduce the first group, let us rewrite
Eq. (1) in the following dimensionless variables:

x′ = x/L , t ′ = tU/L , Eu′ = Eu/U, p′ = p/(ρl U
2), ρ ′ = ρ/ρl andµ′ = µ/µl . (26)

If we substitute (26) into (1) and drop the primes, it becomes

∂Eu
∂t
+∇ · (Eu⊗ Eu) = Egu

Fr
+ 1

ρ
[−∇ p+

EFs

We
+ 1

Re
∇ · (2µD)]. (27)

The dimensionless density and viscosity outside the bubble are equal to one;Egu is a unit
gravitation vector. When it is not specially indicated, we compute the parameters (24) with
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L = 2R. If U is put equal to(Lg)1/2, then We turns out to be the E¨otvös numberE0 and
Re becomes equal to Re0,

Re0 = (2R)
3
2
√

gρl/µl . (28)

A dimensionless combination of these parameters,E3
0/Re4

0, yields the Morton numberM .
On the other hand,M is We3/(Re4Fr) and E0 is We/Fr whenL = d. In fact, the E¨otvös
number is a dimensionless size of a bubble; it belongs to the interval(10−2, 103). The Morton
number depends only on the properties of the liquid; it varies strongly depending on the
viscosity of the surrounding phase, from 10−14 for liquid metals up to 108 in viscous oils.
The parameters of an air bubble in water (µl = 1.137× 10−2 g/(cm s),ρl = 1.0 g/cm3,
σ = 72.8 dynes/cm) give rise toM = 4.25× 10−11. In [63, 66], the reader can find an
exhaustive list of the literature concerning numerical simulations of a single bubble.

8.2. Numerical Experiments

If not specially indicated, the conditions of the calculations are as follows. The dimension
of the box is 1× 2 cm; the initial bubble radius isR= 1/6 cm; the start position of its center
is at(0.5 cm, 0.75 cm); g = 980 cm/s2; the density of the liquidρl = 1.0 g/cm3. Bubble
velocityU is computed from the change in the position of the bubble nose using the central
differential in time. After the advection step, if necessary, we adjustC to be in the interval
(0, 1). This may result in total volume (ormass) violation, otherwise preserved by the
algorithm. The relative lossM rel.(t) of the total massMa of the gas phase is defined as

M rel.(t) = Ma(t = 0)−Ma(t)

Ma(t = 0)
. (29)

The time step satisfies the CFL condition on the advection mesh (max(‖Eu‖)1t
h < 1

2) and
the restriction given by Brackbillet al.[13], coming from the stability condition at capillary
level.

An implicit Euler time discretization is used in both conservation relations (11) and
(12). No upwind approximation is used. The convection term is discretized with relation
(19). We have not found any noticeable difference between these solutions and implicit
Euler discretization, at least for the medium range Reynolds numbers under consideration.
Surface tension force is implemented in the exact form (17) on the spline aligned grids and
on the adaptively refined grids used in Section 8.2.4. Important here is while computing the
surface tension in a form (16), (5), the solution was destroyed by the anomalous currents in
this last experminent. Implementation of the surface tension on the cubic splines helped us
to obtain the stable solutions.

8.2.1. Study of the interface interpolants.We consider here a relatively large bub-
ble with E0 = 40.1 andM = 125. Other dimensionless parameters of the experiment are
Re0 = 4.77, Re= 0.88, We= 1.4,ρl/ρg = 40,µl/µg = 88. The streamlines at the steady
state are shown in Fig. 8 in reference frame moving with the bubble. Mass violatingspline
B and mass conservingspline Care used to represent the interface, whereas the solution is
obtained on a regular 32× 64 grid.Spline Cis fixed in the same manner as in Section 7
for the case of a stationary bubble. We show in Fig. 7 that even in the case of the smooth
bubble shape variation,spline Chappens to oscillate more thanspline B. We suggest that
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FIG. 7. Mass violatingsplines B(bottom row ) and mass conservingsplines C(top row) in caseM = 125,
E0 = 40.1, µl /µg = 88.

the best mass conserving spline should be one with the minimal curvature. Computing the
surfaces of minimal curvature [12, 15] is based on the idea that while evolving with the
speed equal to−κ (κ being a local curvature), the surface will come to a “minimal” surface.
In [15], the surface is attached to a fixed “frame.” In our case, we conjecture that a frame

FIG. 8. Streamlines in case of rising bubble withM = 125, E0 = 40.1.
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could correspond to a moving set of points which satisfy the nonlinear system of equations
for mass preserving spline. Should our conjecture succeed, that the best mass conserving
spline is one with the minimal curvature, no additional criterion will be needed.

In all simulations below, we align the grid to the interface approximated byspline B.
We confirm that even in the case of strong deformations, the relative mass violation caused
by spline Bon rather coarse grids (h = 2−5) is less than 1%. On the other hand, the mass
violation induced by the “spline rectifying” on the aligned grid has usually the same order
of magnitude whether it is fitted to aspline Bor to spline Cinterface interpolant. Thus,
if no finer approximation to the spline interface is done by the subsequent refinement, the
reconstruction of the interface withspline Bis justified from a practical point of view. In
the simulations presented below, cubicsplines Bare found smooth enough to ensure an
accurate evaluation of the curvature. The convergence rates of the normal and curvature
estimations obtained fromspline A, spline B, andspline Cinterpolants have to be compared
with the results presented in [2, 42, 53] and further studied for distorted interfaces as well.

8.2.2. First experiment.Buoyant two-dimensional bubbles with three different E¨otvös
numbers:E0 = 1, E0 = 10, andE0 = 104 are modeled by Unverdi and Tryggvason [66]
with a front-tracking method. They use a finite difference MAC-type discretization on a
65× 129 regular grid. Four experiments with differentM are considered for eachE0. The
Morton numberM decreases with the fluid viscosityµl , whereas the bubble viscosityµg

and the density ratio are kept constant; soµl/µg decreases from the calculations with higher
to smallerM .

Here, we calculate the bubbles with the sameE0, M , µl/µg, andρl/ρg = 40 as in [66];
free-slip boundary conditions are used. The results are shown in Figs. 9 and 10. All calcula-
tions, except those of the skirted bubbles, are done onspline Baligned computational grids,
constructed over 32× 64 regular mesh. Skirted bubbles displayed in Fig. 10e are obtained
on a regular 64× 128 regular grid while the spline technique has not yet been implemented
to deal with the reconnection. The time step1t = 5× 10−5 s except for Fig. 9b where it is
doubled. Relative mass loss (29) is given att = 0.06 s. When the moving is done on the same
mesh and with the same time step,|M rel.| ncreases with Re (cf.M rel. in cases (c) and (d)).

At the steady state, bubble shapes and streamlines are found in good qualitative agreement
with the results displayed in Figs.3 and 4 in [66]. Consider first small bubbles or the bubbles
with high surface tension whenE0 < 40. Following the classification in [14], they are
found in a spherical or ellipsoidal regime (see Fig. 9 and Table III). ForE0 = 1, the top
of the bubble becomes slightly flatter than the back and the wake appears due to stronger
deformation whenM decreases. This corresponds to the steady state axisymmetric shapes

TABLE III

Parameters for First Experiment

µl /µg E0 M Re0 Re We M rel.

(a) 88 1 10−7 56.23 42 0.58 2.0× 10−4

(b) 493 1 10−4 10 4.46 0.2 5.2× 10−5

(c) 88 10 10−4 56.23 21.55 1.47 5.3× 10−5

(d) 493 10 10−1 10 3.5 1.18 2.8× 10−5

(e) 85 104 10−1 57.9 22.5 15.6 −1.3× 10−5

( f ) 479 104 102 10.3 3.58 12.53 2.2× 10−5
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FIG. 9. Rising bubbles withE0 = 1 (a, b) andE0 = 10 (c, d). Further details are given in Table III.
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FIG. 10. Rising bubbles withE0 = 104. Further details are given in Table III.

drawn by Ryskin and Leal [55, Fig. 2]. Oblate ellipsoids obtained forE = 10 are in close
agreement with [66]; whenM decreases, the separation occurs at the rim of the ellipsoid
and “egg-shaped” closed wake appears behind it.

If E0 > 40, the bubbles are found in spherical cap regime. When Re increases, the
bubbles change likewise from oblate ellipsoidal to the oblate-ellipsoidal cap shapes, and
then to the spherical-cap shapes (see photos presented by Bhaga and Weber [10, Figs. 2
and 3]. Large bubbles in highM systems at Re of order 10 to 50 can develop thin annular
films of dispersed fluid, usually referred to as “skirt.” Skirted bubbles are studied by Hnat
and Buckmaster [30]; in their experiments, the values We/Re> 2.32 imply the appearance
of a skirt for Re> 9. Although this criterion is not satisfied by the 2D bubble displayed in
Fig. 10e, the skirt partially envelopes the wake similar to the idealized skirted spherical cap
bubble drawn in Fig. 2 in [30]. The wake structures agree with the schematic wake diagram
for skirted bubbles (see [14, Fig. 8.5]): internal circulation consists of two vortexes while
toroidal vortex develops behind the bubble.

8.2.3. Second experiment.Large gas bubbles are modeled with the axisymmetric level
set method in the recent work of Sussman and Smereka [63]. Their dimensionless pa-
rameters, calculated withL = R, coincide with the experimental parameters ofbubble A
andbubble Cin Table I of Hnat and Buckmaster [30]: Re= 9.8, Fr= 0.76, We= 7.6 and
Re= 24.4, Fr= 0.88 and We= 27.2, accordingly. In both cases,µg/µl = 0.0085 and
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ρg/ρl = 0.0011. Both bubbles have the same Morton number (M = 0.065) and equal sur-
face tension coefficientσ . Their volumes are different and correspond toE0 = 39.3 and
E0 = 123.1, respectively.

We consider here two bubbles of the same radiusR= 1/6 cm but with differentσ .
Morton and E¨otvös numbers coincide with the data given above;1t = 5× 10−5 s. Since
our experiment is two-dimensional, the steady state nose velocityU is less than the expected
valueU3d in the 3D case:U3d = (FrgR)1/2. Consequently, the Reynolds numbers of the
current experiment differ from those in [30, 63]. The evolution of the bubbles is displayed
in Figs. 11 and 12. The form of the wakes outside the bubbles agrees with the experimental
data (see [30, Fig. 1]). In agreement with Bhaga and Weber [10], in the intermediate time
the lower edge becomes sharper if Re increases. The bubble shapes agree quite well with the
evolutions presented in Fig. 4 and Fig. 6 in [63] (here, the time values are different because
of the difference in rise velocity). Similar to the results of Sussman and Smereka,bubble C
develops the skirts and then continues to rise with nearly the constant speed at the nose
as expected from the experimental measurements (see [10, 14]). Rise velocity ofbubble C
is shown in Fig. 13. The skirts break off and travel behind the bubble. This behavior is
similar to the motion of the large bubble displayed in Fig. 10e which has closeE0 andM
values.

Collins [16] derives the velocity of a two-dimensional spherical capped bubble rising
along the axis of a channel of finite width 2b as

U2d =
[

gb

6π
(3− tanh2 α) tanhα

] 1
2

, α = π c̄

2b
. (30)

Here 2̄c is the length of the body. Collins shows that untilc̄/b exceeds 0.4, c̄ is equal to the
radius of curvature at the front stagnation pointā. In order to compareU with the predictions
(30), no-slip boundary conditions are used. The radius of curvatureā is estimated by fitting a
circle through interface points closest to the nose. We obtainU ≈ 6.37 cm/s,ā = 0.298 cm,
U 2d ≈ 6.849 cm/s for bubble AandU ≈ 6.39 cm/s,ā = 0.33 cm,U2d ≈ 6.958 cm/s for
bubble C. We believe that the discrepancy with the prediction (30) may be related to the
inaccuracy in curvature estimation. Moreover, the no-slip boundary condition on the top of
the box can slow the flow. Besides, the steady shapes of the obtained bubbles still resemble
more the oblate–ellipsoidal cap than the spherical cap.

If the moving is done on the same advection mesh, bubble shapes obtained on the regular
and adaptively refined grids practically coincide (see Figs. 11 and 12). They are in close
agreement with the shapes obtained on the aligned grid in the case ofbubble A(cf. middle
and bottom rows in Fig. 11). In the case ofbubble C, some difference appears between the
shapes when the skirts develop (see middle row in Fig. 12). Indeed, we usually see that the
indentation at the rear is a bit less developed on the aligned grids. This may be related to the
fact that the interfacial cells are treated differently during the discretization on regular and
aligned grids. Moreover, the skirts look thicker and mass is preserved better on the aligned
grid since its corresponding advection mesh (underlying regular mesh) is coarser than in
the case of nonaligned grids, but equal time steps are used in all computations.

8.2.4. Third experiment.Bubbles that rise in viscous liquids have been studied by Bhaga
and Weber [10]. They have found that forM > 4× 10−3 and Re< 110, a closed toroidal
wake develops behind the bubble. For Re> 110 the wake appears to be open and unsteady.
In their work, Bhaga and Weber show the steady shapes and the streamlines around rising
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FIG. 11. Evolution of bubble A: µg/µl = 0.0085, ρg/ρl = 0.0011, E0 = 39.3,M = 0.065,Re0 = 31.1,
Re= 11,We= 4.9. Bottom row: Aligned computational grids in course of motion. Middle row: Cubic splines
correspond to computations on regular 64× 128 mesh (dashed line) and adaptively refined grid (solid line), which
is constructed over 32× 64 regular mesh. Att = 0.06 sM rel. on the aligned, adaptively refined, and uniform grids
is−9.45× 10−6, 2.32× 10−5,and 2.73× 10−5, respectively. Top row: Rise velocity is plotted in time. Streamlines
are shown at steady state.

bubbles in four situations with decreasingM (see Fig. 19 in [10]: it corresponds to cases (a),
(d), (f), (g) in their Table 3). The Morton number decreases with the viscosity of the liquid,
from M = 848 to the critical valueMcr = 4.63× 10−3, which is relatively high since very
viscous liquids are used. In this section, we takeρl = 1.314 g/cm3 andρl/ρg = 1090.5,
corresponding to anair bubble (µg = 1.78× 10−4) in liquids [10]. We show in Figs. 14a
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FIG. 12. Evolution of bubble C: µg/µl = 0.0085, ρg/ρl = 0.0011, E0 = 123.1,M = 0.065,Re0 = 73.2,
Re= 25.9,We= 15.4. Bottom row: Cubic splines correspond to computations on the regular 64× 128 mesh
(dotted line), the adaptively refined grid (solid line), and the aligned grid (dashed line). Middle row: Phase dis-
tribution is displayed on the aligned, adaptively refined, and regular mesh. The corresponding valuesM rel are
−1.82× 10−5,−6.73× 10−5, and−6.56× 10−5. Top row: Further motion of the skirted bubble is done on the
adaptive grid.
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FIG. 13. Rise velocity ofbubble C.

and 14b and Table IV the evolution of an air bubble in liquids used by Bhaga and Weber for
two Morton numbers,M = 848 (µl/µg = 1.5× 105) andM = 5.51 (µl/µg = 4.2× 104).
The solutions for an air bubble atM = 0.103 (µl/µg = 1.5× 104) andM = 4.63× 10−3

(µl/µg = 7184) are obtained on the aligned grids up to the moment when the skirts break
off. The computations on the aligned grids are performed with theEFs in the form (17).
When EFs is computed in the conservative form (5), (16), the parasite currents quickly grow
because of the small bubble viscosity and destroy the interface, whether the grid is aligned
to the interface or not. If the bubble viscosity increases, we reach the stable solutions in
these cases (see Figs. 14c, 14d and the corresponding viscosity jumps in the legend).

As the alternative approach, we discretizeEFs on the cubic spline interpolants also in
the case ofnonaligned grids. For this purpose, we use the relations (17) for each pair of
points defining the intersections of the cubicspline Bwith the boundary of the control
volume. Then, stable solutions for air bubbles are obtained for all consideredM numbers
as in the case of the aligned grids. This is demonstrated in Figs. 14b and 15. Up to now,
no special account of the interface position is included during the discretization of the
pressure gradients on nonaligned grids. Nevertheless, computing with the spline interpolants
considerably diminishes the anomalous currents on them.

The bubble shapes and the behavior of the surrounding liquid qualitatively agree with the
experimental results. The bubbles take oblate ellipsoidal cap shapes. The spherical cap form
is not yet reached in case (d), unlike in the experiment of Bhaga and Weber, since the attained
Reynolds numbers are smaller than in real 3D experiments. A strong indentation at the rear

TABLE IV

Parameters for Third Experiment

µl /µg E0 M Re0 Re We 1t (s)

(a) 1.5× 105 116 848 6.55 1.69 7.75 1× 10−4

(b) 4.2× 104 116 5.51 23.1 7.93 13.72 5× 10−5

(c) 250 116 0.103 62.4 22.09 14.54 5× 10−5

(d) 100 115 4.63× 10−3 134.6 47.75 14.46 2.5× 10−5
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FIG. 14. Eötvös and Morton numbers correspond to the experiment of Bhaga and Weber. The evolution of
the bubbles is modeled with the rotated discretization. (a) Aligned grid; (b–d) Adaptively refined grids.
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FIG. 15. Bubble shapes are obtained with the rotated (solid line) and MAC (dashed line) discretizations.
(a–d): E and M correspond to Fig. 14;µl /µg corresponds to air bubble (1.5× 105, 4.2× 104, 1.5× 104, and
7184, accordingly). Rotated discretization: Spline B aligned grid fitted over 32× 64 regular mesh in case (a),
adaptively refined grids otherwise. MAC discretization is done on regular grids: 32× 64 in case (a), 64× 128
mesh in other cases.

during the motion results in the appearance of closed toroidal wakes. Bhaga and Weber fit
the frontal surface of the bubble and compare the boundary of the wake with the boundary of
an ellipsoid in the case of an oblate ellipsoidal cap. We find that the wake grows continuously
when going from smaller to higher Re. The wake is greater in vertical direction than the
frontal ellipsoid, except for the smallest Re. In this way, the study of the wakes provides
results similar to the experimental measurements. The bubbles withM = 5.51,M = 0.103,
and M = 4.63× 10−3 are skirted. This is not the case in the physical experiment, but it
corresponds to the previous numerical computations of large bubbles (see Figs. 10e and 12)
as well as to the results obtained with our MAC-type description, discussed below.

For a comparison, the MAC-type central finite difference (f.d.) approximation of Eqs. (1)
and (2) on a regular grid was implemented. Explicit as well as implicit time discretizations
can be used to treat both convection and diffusion terms. A linear saddle point problem
is solved for all unknown pressures and velocities, similar to the current discretization.
Surface tension is implemented with a f.d. approximation of (5), following [26, 34]. It
should be underlined that this discretization remains stable also for a small bubble viscosity
in all experiments discussed in this section. The interface shapes, plotted with the cubic
spline interpolant, are compared in Fig. 15. In case (a) of the smallest Re and the greatest
viscosity ratio, the small difference in bubble shapes is mainly related to the difference in
the discretizations on the regular and aligned grids. The skirts agree quite well in the next
three experiments where we mainly attribute the difference to the different treating of the
surface tension force. This is confirmed by the computations in the cases shown in Figs. 14c
and 14d, when the relations (5) are used in both discretization schemes. Finally, we do not
think that the advection schemes are responsible for the skirt formation in our model since
our preliminary computations with the unsplit advection scheme [54] provide very close
results. Remarkably, the 2D level set method [62] and axisymmetric level set method [63]
also exhibit a tendency to form skirts.
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9. CONCLUSION

We have introduced a two-dimensional two-phase model based on an implicit finite
volume discretization of the Navier–Stokes equations on unstructured computational grids,
which either adaptively refine the interface or produce a grid that is aligned with it. In
computations with the interface aligned grids, the jumps of the pressure and the continuity
of the viscous stresses are kept on the front. Another important advantage that we see is the
ability to accurately compute the surface tension force on cubic spline aligned grids. We
show that the anomalous currents disappear when the interface is represented by a true circle.
They are significantly reduced by using spline aligned grids. Staggered finite volumes and
the construction of the adaptive/aligned grids can be extended to 3D and to fully unstructured
mesh in a straightforward manner based on 3D elements [9] and the development [22, 41,
54] of VOF algorithms designed on the unstructured mesh, respectively. The reconstruction
of the interface as spline interpolant in a 3D case can be done with parametric non-uniform
rational B-splines (NURBS) surfaces [35], due to their flexibility in local choice of the
rational polynomials (i.e., quotients of two polynomials). In particular, parametric surfaces
can represent spheres, ellipsoids, and many other surfaces. An algorithm which computes
a control point configuration closest to the given one, such that the free form solids contain
volumes of the given sizes, is presented in [49]. The method [49] can use NURBS basis
functions as well.

Spline interface reconstruction also enables us to reduce considerably the anomalous
currents in VOF models, even if they are based on regular grids. Taking into account the
interface position and the jumps on it while discretizing the pressure gradients should result
in further improving the accuracy on such a grid. The combination of high-order upwinding
methods with staggered finite volumes is necessary for real air/water computations with
small Morton and high Reynolds numbers. We are currently working on solution techniques
for saddle-point problems more tuned to interfacial problems. Our current construction of
the aligned grids is done locally and the symmetry is preserved. We benefit at the advection
step from the fact that the grid underlying the aligned grid or the adaptively refined grid
itself is regularly refined near the interface. When an approximation of boundary conditions
at the boundaries of the domain needs to use the unstructured grids already at the low levels,
or when a strong distortion of the interface needs to use a nonregular adaptive strategy, grid
generators can be employed in two as well as in three dimensions to construct the sequence
of grids approximating the front. Also, advection schemes based on spline interpolants
rather than on the PLIC method, could be developed in the future.

Although the current representation of the interface is based on the VOF method on regular
grids, the model can work with other front descriptions. In particular, one can reconstruct
the zero level set from the level set function provided by the level set approach. Then the
model will combine such advantages of the last method as front advection via the solution of
a PDE and the handling of interface merging and reconnections, with the versatility of finite
volumes and finite elements on unstructured grids. Finally, our solution procedure does
not use projection methods, but solves the entire linear system for the unknown pressures
and velocities. In this way, a change in the time discretization scheme does not affect the
solution method. Since the necessity to use the implicit schemes for the convection term in
two-phase computations with strong surface tension and/or flux-based advection algorithms
is not obvious, the model could benefit from the projection methodology when combined
with the finite element discretizations on the interface aligned grids.



TWO-PHASE FLOWS, VOF, FINITE VOLUMES, AND SPLINE INTERPOLANTS 333

ACKNOWLEDGMENTS

We acknowledge support from the SFB 412 and the CNRS-DFG French–German research program in com-
putational fluid mechanics. The support of theUG numerical group has been very helpful in the implementation.
I.G. is grateful to D. Gueyffier, H. Rentz-Reichert, W. J. Rider, M. Rieber, R. Scardovelli, and S. Zaleski for
useful discussions. The authors thank G. Mazurkevich, W. J. Rider, and A. Schatz for their critical readings of the
manuscript.

REFERENCES

1. N. Ashgriz and J. Y. Poo, A computational method for determining curvatures,J. Comput. Phys.84, 483
(1989).

2. I. Aleinov and E. G. Puckett, Computing surface tension with high order kernels, inProc. 6th International
Symposium on Computational Dynamics, edited by K. Oshima, Lake Tahoe. CA, September 4–8, 1995.

3. N. Ashgriz and J. Y. Poo, FLAIR: Flux line-segment model for advection and interface reconstruction,
J. Comput. Phys.93, 449 (1991).

4. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. Van der Vorst, Templates for the solution of linear systems: Building blocks for iterative methods,SIAM
(1994).

5. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners, UG—A flexible
software toolbox for solving partial differential equations,Computing and Visualization in Science1, 27
(1997).

6. J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method of the incompressible Navier–Stokes
equation.J. Comput. Phys.85, 257 (1989).

7. J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed
approximations of elliptic problems,Math. Comput.50, 1 (1988).

8. J. H. Bramble,Multigrid Methods, Pitman Res. Notes in Math. Sci., ISSN 0296-3674, 1993.

9. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods,Springer Series in Comp. Math.15
(Springer-Verlag, 1991).

10. D. Bhaga and M. E. Weber, Bubbles in viscous liquids: Shapes, wakes, and velocities,J. Fluid Mech.105, 61
(1992).

11. T. J. Barth,Aspects of Unstructured Grids and Finite-Volume Solvers for Euler and Navier–Stokes Equa-
tions,** VKI/NASA/AGARD Special Course on Unstructured Grid Methods for Advection Dominated Flows,
AGARD Publication R-787, 1995.

12. T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton–Jacobi and level set equations on triangulate
domains,J. Comput. Phys.145, 1 (1998).

13. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension,J. Comput.
Phys.100, 335 (1992).

14. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic Press, San Diego, 1978).

15. D. L. Chopp, Computing minimal surfaces via level set curvature flow,J. Comput. Phys.106, 77 (1993).

16. R. Collins, A simple model of the plane gas bubble in a finite liquid,J. Fluid Mech.22, 763 (1965).

17. A. V. Coward, Y. Y. Renardy, M. Renardy, and J. R. Richards, Temporal evolution of periodic disturbances in
two-layer Couette flow,J. Comput. Phys.132, 346 (1997).

18. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the
stationary stokes equations.Revue Francaise d‘Automatique, Informatique et Recherche OpérationneleR-3,
33 (1973).

19. B. J. Daly, A technique for including surface tension effects in hydrodynamic calculations,J. Comput. Phys.
4, 97 (1969).

20. R. DeBar, Fundamentals of the Kraken Code, Technical Report UCIR-760, LLNL, 1974.

21. D. E. Fyfe, E. S. Oran, and M. J. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a
triangular mesh.J. Comput. Phys.76, 394 (1988).



334 GINZBURG AND WITTUM

22. D. M. Gao, A three-dimensional hybrid finite element–volume tracking model for mould filing in casting
processes,Int. J. Numer. Methods Fluids29, 877 (1999).

23. O. S. Galaktionov, P. D. Anderson, G. W. M. Peters, and F. N. Van de Vosse, An adaptive front tracking
technique for three-dimensional transient flows,Int. J. Numer. Methods Fluids32, 201 (2000).

24. D. M. Greaves and A. G. L. Borthwick, On the use of adaptive hierarchical meshes for numerical simulation
of separated flows,Int. J. Numer. Methods Fluids26, 303 (1998).

25. J. Glimm, J. Grove, B. Lindquist, O. McBryan, and G. Tryggvason, The bifurcation of tracked scalar waves,
SIAM J. Sci. Stat. Comput.9, 61 (1988).

26. D. Gueyffier, J. Lie, R. Scardovelli, and S. Zaleski, Volume of fluid interface tracking with smoothed surface
stress methods for three-dimensional flows, unpublished (1998).

27. W. Hackbusch, Multi-Grid Methods and Applications (Springer-Verlag, New York, 1985).

28. F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface,Phys. Fluids8, 2182 (1965).

29. C. W. Hirt and B. D. Nicholls, Volume of fluid (VOF) method for the dynamics of free boundaries,J. Comput.
Phys.39, 201 (1981).

30. J. G. Hnat and J. D. Buckmaster, Spherical cap bubbles and skirt formation,Phys. Fluids19, 182
(1976).

31. J. M. Hyman, Numerical methods for tracking interfaces,Physica D12, 396 (1984).

32. J. H. Jeong and D. Y. Yang, Finite element analysis of transient fluid flow with free surface using VOF
(VOLUME-OF-FLUID) method and adaptive grid.Int. J. Numer. Methods Fluids26, 1127(1998).

33. D. B. Kothe,Perspective on Eulerian finite volume methods for incompressible interfacial flows, lecture
notes presented at Free Surface Flow Workshop, International Centre for Mechanical Sciences, Udine, Italy
(September 1–5, 1997). [InFree Surface Flows, edited by H. C. Kuhlmann and H.-J. Rath (Springer-Verlag,
New York), p. 267].

34. B. Lafaurie, C. Nardone, R. Scardovelli, and S. Zaleski, Modeling merging and fragmentation in multiphase
flows with SURFER,J. Comput. Phys.113, 134 (1994).

35. Les Piegl and Wayane Tiller, The NURBS Book (Springer-Verlag, New York, 1997).

36. R. J. Leveque, High-resolution conservative algorithms for advection in incompressible flow,SIAM J. Numer.
Anal.33, 627 (1996).

37. J. Li, Calcul d’Interface Affine par Morceaux,C. R. Acad. Sci. Paris320, série IIb, 391 (1995).
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