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A two-phase 2D model that combines the volume of fluid (VOF) method with
implicit staggered finite volumes discretization of the Navier—Stokes equation is
presented. Staggered finite volumes are developed on the basis of nonconforming
Crouzeix—Raviart finite elements, where all components of the velocity lie in the
middle of the element edges and the pressure degrees of freedom are found in the
centers of mass of the elements. Staggered finite Volumes extend marker and cell
(MAC) regular staggered grids to unstructured mesh. A linear saddle point prob-
lem, resulting from either the discretization or the Newton method, is solved for all
unknown pressures and velocities. Interface is represented with spline interpolants
which follow the VOF distribution. Adaptive mesh refinement is used to obtain a high
level of uniform refining at the domain of dependence of the interface. The aligned
grid is obtained by irregular refining of the cells which are intersected by a curve.
The boundaries of its elements coincide with the slope segments going through the
intersections of the curve with the underlying regular elements boundary. The de-
formable computational grids are used only to discretize the Navier—Stokes equation.
The advection of volume fractions is done on the advection mesh, which corresponds
to highest regular refining on the computational grid. Approximation of the surface
tension on spline interpolants offers a straightforward way to describe correctly the
pressure jumps on interface-fitted staggered grids. This allows deletion of the anoma-
lous currents around a statical bubble and their effective reduction in real simulations.
On the aligned grid, the continuity of the viscous stress is modeled exactly due to
the finite volume approach. Using the proposed numerical techniques, single bubble
rise is analyzed. @© 2001 Academic Press
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1. INTRODUCTION

In order to solve two-phase problems with immiscible fluids, incompressible Navie
Stokes equations are necessary. The difficulty arises from the presence of moving s
fronts where pressure and velocity derivatives may have jump discontinuities. Numer
methods describing the interface and its propagation are often based on similar discre
tions of the basic conservation laws. Here, we must deal with two principal directiol
surface trackingandsurface capturingsince our model can be seen as a hybrid of bott
Excellent overviews of the interface methods are given by Hyman [31], Unverdi and Try
gvason [66], Sussman and Smereka [63], Rider and Kothe [54], Kothe [33], Rudman |
61], and Scardovelli and Zaleski [57].

Surface-trackingmethods explicitly treat the interface as a discontinuity. Usually, it i
specified by an ordered set of marker points, connected by an interpolation curve.
markers are advanced in the Lagrangian manner and then redistributed to obtain the
resolution of the interface (see Glimet al. [25], Daly [19], and Popinet and Zaleski
[45]). With the front-tracking method of Unverdi and Tryggvason [66], the interface |
represented by ainterface grid Density and viscosity fields are computed from the inter
face grid position with the help of smooth indicator functions. Free Lagrangian methc
do not treat the basic equations and the interface propagation separately. Instead,
advect the computational grid itself by the Lagrangian equations (seeefyk[21]).
Galaktionovet al.[23] apply efficiently a front-tracking technique in strongly deformable
geometries.

Surface-capturingmethods are implicit with respect to the interface: by using speci:
functions for the description of the multiphase distribution, they do not need the ex
interface position to discretize the governing equations. The first volume-tracking methi
are due to DeBar [20], Hirt and Nicholls [29], and Noh and Woodwards [43]. The volume
fluid (VOF) method [29] uses a volume fraction distribution (vof) to represent the two phas
The level set approach due to Osher and Sethian [44] uses a so-called level set fun
to implicitly capture the front. Both methods handle the complicated interfaces, includi
their merging and break up, more easily than the surface-tracking methods. The leve
method advects the interface by solving a partial differential equation (PDE) for the le
set function. Considerable efforts have been devoted to creating accurate advection sch
based upon interface reconstruction for the volume-tracking methods. An exhaustive re\
of this subject is Rider and Kothe [54].

To date, the first volume-tracking methods have used three different types of interf
reconstruction: piecewise linear approximation across cell faces [20], piecewise cons
(“stair stepped”) approximation [29], and piecewise constant, the SLIC technique [4
Following Youngs’ second-order-accurate 2D method [71] and first-order 3D method [7
the most popular piecewise linear interface calculation (PLIC) methods reconstruct f
surfaces of arbitrary geometry locally within each interfacial cell based on the estimat
of the normal to the interface. The locality of the method results in the discontinuity
the interface on the cell edges. The SURFER code [26, 34, 57] computes the fluxes ac
the cell boundaries from tteplit Lagrangianpropagation of the first-order PLIC interface.
The volume-tracking algorithm of Rudman [60] develops the concept of Zalesak’s flL
corrected transport without interface reconstruction. The method is intensively tested ag:
the SLIC, Hirt—Nichols VOF, and first-order Youngs method. The FLAIR method ¢
Ashgriz and Poo [3] is based on a linear reconstruction, continuous at the face betw



304 GINZBURG AND WITTUM

two adjacent interfacial cells. Second-order improvement of the FLAIR is discussed
Kim and No [51], where a parabolic curve holds both face slops and vof in interfacial cel
An approach similar to [3] is extended by Jeong and Yang [32] to 2D quadrilaterals e
ments. They also develop a geometrical smoothing algorithm which results in a piecev
linear continuous reconstruction specially adapted to filling processes. High-order lineat
terface reconstructions and advection methods have been developed by Pilliod [52], Pu
et al.[47], and Rider and Kothe [54]. Rider and Kothe also extend Youngs method [72]
calculate the normal to unstructured meshes, based on the linear square sense appro
Barth [11]. The accuracy of this method is compared with the second-order-least squ
minimization [47, 52] and a second-order-accurate iterative procedure due to Swartz |t
The Swartz method is applied in a new full remapping time integration scheme [41, 4
which represents a 2D illustration of recent enhancement to multidimensional volun
tracking advection schemes on both structured and unstructured grids. Very recently,
[22] has applied a volume-tracking technique to 3D unstructured tetrahedral colloca
mesh.

A common problem of all methods is an accurate representation of the surface ten:
force which is concentrated on the interface. Often, the surface tension term is compt
either with the continuum surface force (CSF) model of Bracldiilal. [13] or with the
continuum surface stress (CSS) formulation of Lafaatial.[34]. The CSF represents the
surface tension effects in a form of a smoothly varied volumetric force. Different metho
for estimating the curvature, normals, and the surface delta function required for C
model have been developed [2, 33, 61, 69]. The sensitivity of the results to the choice
smoothing kernels and the interface orientation, as well as to degree of smoothing, is
yet well understood. The CSS method [26, 34, 57] requires only the computation of
normals to the interface.

An inaccuracy caused by these methods manifests itself, in particular, in well-kno
anomalous currentgsround the stationary bubble (see [34, 57, 61, 69]). In simulatior
with the relatively strong surface tension effects, and especially in the presence of Iz
density/viscosity jumps, the currents can progressively grow and destabilize the solu
(see [2]). The currents can be reduced due to appropriate smoothing in the CSF anc
CSS methods, but no remedy is found to delete them with these approaches. An altern
way is to model a correct pressure jump at the interface. In modeling the surface ten:
force on interface interpolants, cubic splines [19, 21, 45] have been found smooth eno
to ensure an accurate discretization of the curvature. Popinet and Zaleski [45] annihi
the spurious currents due to taking into account, in addition to spline interpolation whi
goes through a set of marker points, the interface position while discretizing the press
gradients.

An account of the interface position is rather delicate if the grid is fixed. Alsc
Cowardet al. [17] show that commonly used simple viscosity averages significantly re
duce the accuracy of VOF models at the interface. In order to introduce correctly 1
pressure jumps and the continuity of the viscous stresses, the remedy can be found ir
formable grids, where element boundaries lie along the reconstructed interface. In cor
nation with the VOF method, this approach was developed by Sato and Richardson [56]
Mashayek and Ashgriz [40]. In Sato and Richardsdrirgye element generation method
the grid lies along a piecewise linear, continuously reconstructed interface which prese
the vof distribution. Loclet al. [38] and Barth and Sethian [12] use pseudo-concentratio
and level set techniques, accordingly, to track the front. Triangular mesh naturally provi
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a smooth front and an advection of the continuous and monotonic level set functior
performed through the fixed finite element mesh.

Deformable grids induce the development of multiphase finite element schemes
finite volume schemes based on finite element approximations. In the works cited ab
collocated discretization based on penalty function formulation is usually chosen [32,
40, 56]. A special discontinuous piece-wise linear pressure approximation is used to m
a pressure jump in [38]. Gao [22] employs a special mixed FEM formulation to obtair
stable discretization of Navier—Stokes equations. The outcome of front aligned grids is
the boundary conditions at the front are satisfied accurately without any Lagrangian moz
of mesh system.

Summarizing the aforesaid, we emphasize two main factors in our work, which def
the success of interface flow simulations: the correct approximation of surface tension fc
and the correct interface boundary conditions. In the first, we use the spline interpola
In the second, we consider the grids aligned to the interface, including the use of unst
tured (locally, near the interface) grids and finite volume discretization of Navier—Stok
equations. We keep in mind that all the algorithmic constructions have to be extende
complicated geometries and to 3D. Our choice of the algorithmic path is supported by
possibilities which offer the simulation tool UG [5, 50] to introduce any degrees of freedc
while discretizing on adaptively refined and/or unstructured grids in 2D and 3D cases.

We propose to combine a VOF method wéttaggered finite voluméder Navier—Stokes
equations. We develop this discretization for two-phase Navier—Stokes equations base
the nonconforming Crouzeix—Raviart finite elements [18]. The velocity degrees of freed
lie in the middle of the element edges. The pressure degrees of freedom are located i
centers of mass of the elements. Since pressure points do not lie on the element bound
approximation of the surface tension on spline aligned grids enables us to model corre
a pressure jump, to delete the anomalous currents around a statical bubble, and to re
them effectively in real simulations. The benefits of using the VOF are that it tracks t
interface topology and spline interpolation is “attached” to the obtained vof distributio
The construction of a cubic spline which preserves volume fraction distribution is presen
Three different types of computational grids are combined to track the pressure and velo
uniform, adaptively regular refined, and interface aligned grids. Time integration of v
distribution is accomplished with a SURFER approach [26] on a so-called advection me
corresponding to a highest regular level of the computational grid.

The paper is structured in following way. In Section 2, the basic relations are given.
Section 3, interface reconstruction is presented. In Section 4, computational and adve
meshes are constructed. Staggered finite volumes are introduced in Section 5. Diffe
transgrid interpolations are discussed in Section 6. Laplace law is modeled in Sectio
Rise of single bubbles is analyzed in Section 8.

2. BASIC EQUATIONS

Assume that two immiscible phases, say liquid and gas, occupy a 2D rectangular dor
Q. The velocity fieldi = (ux, uy) and the pressungof each phase obey the incompressible
Navier—Stokes equation

3 o - 1
por F V- @@W =—-Vp+pG+Fs+ V- (2uD), D=§<Vu+vtu); (@



306 GINZBURG AND WITTUM

V.i=0. (2

Inbulk, p = {01, pg} is the density angt = {1, g} is the viscosity. For immiscible phases
they are constant along a particle path; therefore the following relations hold:

ap ouw
— +UVp=0; —+uvu=0. 3
o HUVp or Havu )

The surface tension force acts on the interf&dmetween the fluids. If the surface tension
coefficiento is constant, the surface tension force per unit &e#s defined as

Fe = okids. 4)

Herex (f) = —(V - A)|r is a local curvature, taken positive if the center of curvature i
in the gas phasé)(F) is the unit normal toS at T, directed from the continuous phase
into the gas phase. Distributidg is concentrated on the interfa8e A precise numerical
computation of the curvature is difficult unless the interface is represented by a sufficier
smooth curve, e.g., twice continuously differentiable. Assumingd&dbes not vary in a
direction normal to interface, Lafaure al.[34] have shown thalt?S can be included into
Eg. (1) in the momentum-conserving form

Fsx-V.T, T=o(-R®0)ss ()

In practiceds is often approximated a% = || VC]|| ; || - | denotes the Euclidean norm of a
vector. The finite difference “filters” to smoo@ before its uses in (5) are discussed in [34,
57].

The velocity is assumed to be continuous across the interfalee 0. Here and below,
[¥]s = ¥ — ¥4 denotes the jump across the interf&&omentum conservation supplies
the additional interface conjunction condition

[2uD - i — pii]s = Fs. (6)

At the boundary of the physical domaiiy we impose either no-slip or free-slip boundary
conditions.

3. INTERFACE RECONSTRUCTION AND ADVECTION

3.1. Linear Interface

With the volume of fluid approach, we represent the distribution of phaseslbyne
fraction G of the gas phase in céfl The PLIC methods [37, 54, 71] uniquely define the
interface in each cell with & C < 1 by a slope segment, which is perpendicular to a givel
normali:

i ~ VC. (7

If the domain of dependence of the given interfacial cell is refined regul®@y,can
be computed with a nine-point finite difference stencil in 2D. Following [52, 54], th
method for normal estimation which reproduces a line (a plane) exactly, regardless of
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orientation with respect to fixed coordinate system, is referred to as second-order met
With this criterion, PLIC methods based on finite difference approximation of the norn
done separately for each cell are only first-order accurate. When the accuracy anc
convergence of the different algorithms are studied to calculate the normal [54], the fi
order method (referred to as Youngs’ second method in [54]) has better accuracy on cc
grids than the higher-order methods. The results presented in this paper are obtained
the first-order finite difference normal estimation.

3.2. Cubic Spline Interpolant

Piecewiseparabolic interface reconstructions which preserve also the volume fracti
distributions are usually drawn through only a local set of neighbors (se®& Block in [1],
two neighboring cellsin [51], % 3 blockin [53]). In the last work, the volume conservation
is ensured in least-squares sense. M@t s0. [42] draw a circle going through midpoints
of three neighboring interfacial segments. At the same time, cubic splines [19, 21, ¢
going through dixed position of marker point&, yx), are found to be smooth enough
to ensure the accurate numerical computations of the curvature in (4). The third-or
polynomial parametric functio(x(s), y(s)), X(s) € C?, y(s) € C?, has the following form
in the interval betweexk_1, Yk_1) and (X, Yk), k > 1:

(Y4 V54 MY Ly
Y = <L —9°%+ k@—&lf+<jh——ﬁli>®—&o

6Lk 1 6Ly 1 Lrt 6
0 ML
et Meaten) o ) (8)
Lrt 6

Here, ¥ (s) denotesx(s) or y(S); & is a value of the parameterat point (Xk, Yk): & =
Z‘j‘zl((x,— —Xj_1)2+(yj — ¥;-1d? and Ly_1 = S — S_1. The continuity of the first
derivatives at the points, yx) supplies the necessary linear equations to determine tl
second derivativeM) and M.

In VOF models, the points lying on the interface are unknavgmiori. Our basic idea is
to construct a cubic spline interpolant (8) which exactly cuts the phase distribution in e:
interface cell. Assume that the spline intersects the edges of b interfacial cellk with
the boundary X at pointsC = (xx_1, Yk_1) andD = (X, Y«) (see Fig. 5). Suppose further
that we knowwhich edges should be cut by the interface but we do not kndnerethe
interface cuts them. Then one of the coordinates of each cross point is fixéy.destote
the unknown coordinate. Following [45], we use the Stokes theorem to express the volt
Vi of the cellk cut by the cubic spline as

szjgzxdy. 9)

This is schematically shown by the sequence of padnt®, E, F, C in Fig. 5. Our purpose
is to satisfy the volume conservation relations

Vi =Ckh%, k=1,...,N. (10)
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If function fsil x(s)y'(s)dsis determined from (8)yx is written in terms of the unknowns
(M4, MX, MY, MY, &1, &). Together with the conditions of the continuity of the first
derivatives at the pointx{, Yk), relations (10) supply R nonlinear equations to find\8
unknowns {(M}, M,{, &), k=0,..., N — 1}, in the case of the self-connected interfaces
considered in this paper. Otherwise, additional boundary conditions should be impo
for the derivatives of the cubic spline at the boundary points (see [46]). When we so
this nonlinear system with the fully convergent Newton method [46], the Jacobian can
computed analytically. Two main problems concerning the solution should be emphasiz
First, the solution can go outside the cell along the given edge. In this case, it does
keep the phase volume in the given cell but spreads it between two (or more) neighbo
cells. If we encounter this situation, we accept the solution lying inside the interfacial ce
that minimizes the residual of the nonlinear equations. This is in some sense simila
least-squares approximation to the solution in this situation.

Second, the solution of the nonlinear problem may or may not be unique and a spe
criterion should be used to fix one of the solutions. An example can be viewed in [5
where a continuous linear front reconstruction is uniquely defined due to a special fix
of the “interface contact” node at a no slip wall. We discuss in Section 7 how we fix t
the solution in the case of the axisymmetric 2D bubbles where for any choice of the s
point at the “nose” interfacial cell, the solution described just above can be found. If t
second derivativesM), M) are set equal to zero, the solution of the nonlinear syster
(10) corresponds to@ontinuous linear interfaceeconstruction which maintains the phase
distribution. However, the same solvability problems still remain.

Below we describe how we define which edges of the interfacial cells should be cut
the continuous interface. Assume here that the interface should separate the domain
two subdomainsifisideandoutsidethe fluid) corresponding t68 = 1 andC = 0. First, we
constructthe discontinuous linear interface with PLIC. Then, a preliminary parametric cu
spline, referred to aspline A is drawn through the centers of the linear—slope segments. Tl
cross pointsA of spline Awith the cell edges determine the poigx?, y0) (see Fig. 1).
The edges wherBy lie are those that are assumed above to be cut by the interface. A m

FIG. 1. Sketch for splines A and B. Spline A goes through the middle points of the PLIC intedgcé\{,
A, ...). Spline B goes through the intersections of Spline A with the grid’s elements bourigial,( By, .. .).
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violating cubic spline, referred to apline B goes through the poin, and provides an
initial guess(MQ'O, MY, £0) to cubicspline Cwhich should preserve a phase distribution.
We construct thepline Awith the following algorithm:

e Choose a clockwise or counterclockwise order of the passing the interface. Asst
here a counterclockwise direction where the gas phase () is on the left.
e Reconstruct PLIC interface in each interfacial cell. With respect to chosen directic
denote its start point as; and end point ap.. Mark all interfacial cells with “0.”
e Choose arbitrarily an interfacial cell where thgline Ashould start.
¢ |. Denote the cell under considerationcas (current cell). Mark it with a “1.”
Include the midpoint of the PLIC interface in the current cell in the subsequent points u:
to construct thespline A
¢ II. To find the next point, analyze the neighbors of the current cell.
1. I f the interfacial neighbor shares with the current cell an edge whgo) lies
and if it is marked with “0,” go td (see Fig. 2a).
2.Else examine the neighbors which share the edges where neiffter) nor pe(c.c)
lies. If there is an interfacial neighbor marked with “0,” golt(see Fig. 2b).
3. Elseg look for an interfacial cellf.c (find cell) that satisfies the following four
conditions:
(a) Itis marked with “0.”
(b) The gas phase is at the left (because of chosen counterclockwise direction) f
the line connecting thee(c.c) and ps( f.c).
(¢) Il pe — psll is smaller than any prescribed valeps

y
/‘
‘H. L

P
a)
4
12
7
2
/ /
l gy L 3
b) c)

FIG. 2. Sketch for construction of spline A. (a) The interfacial neighbor shares with the current cell an ec
where pe(c.c) lies. (b) The interfacial neighbor shares with the current cell an adge where ngitlear) nor
pe(c.c) lies. (c) Next cell is a neighbor.
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(d) ps( f.c) is closest tape(c.c) among the points which satisfy conditions (a)—(c).
If such a cell is found, go tb (see Fig. 2c).

e lll. The algorithm stops when no cell is foundlin3.

Let us comment on the algorithm above. If each interfacial cell has two or more inte
facial neighbors, the algorithm always finds a subsequent cell to be visited by the sp
in 1. 1-1. 2. A case of only two interfacial neighbors is most frequent when the interfac
is adequately smooth (see, e.g., [3]). Some advection algorithms constrain themselve
a phase transfer from the partially filled cell to the empty cell (see, e.g., [51]). Interfa
smoothing is assumed onlylin 3, which supposes that if the cell has no suitable interfacie
neighbors or all of its neighbors are already visited, the next cell reasonably can be fo
in a given radiugps In case of a self-connectsgline A the algorithm ends successfully
if the first cell satisfies the conditionk 3.b-3.d. In cases when the gas phase consists «
more than one disconnected part, start points lying at the interface of each part have t
chosen and the algorithm should be done for each part separately (see Fig. 3g).

4. COMPUTATIONAL AND ADVECTION GRIDS

We refer to a grid where basic equations are discretized and solvedoasptational
grid. The grid where time integration for vof is accomplished is referred to aslaection
mesh. The regular virtual advection mesh, finer than the underlying regular computatic
grid, was also used by Rudman [61]. In our work, the computational grid is the finest g
of the hierarchy which can be composed from uniform, adaptively refined, and/or aligr
grids. The advection mesh corresponds to the highest regular refining on the computati
grid. Conceptually, the refinement levels of the advection mesh and of the computatic

1T 11
|
]

i

(d) (e) ) (g

FIG. 3. Phase distributioi© corresponds to circl® = 0.25 except in cases (d) and (g). One (a) and two
(b) levels, adaptively refined grids. (8pline Baligned grid, constructed over one adaptive level. (d—f) PLIC
aligned grids. (dC corresponds to a square. Note that each “edge” along a circle in (e) hides the grid eleme
(9) Interface aligned grid fitted tepline Bin case of bubble breaking up.
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grid can be chosen independently. The transgrid operators discussed here and in Sec
provide any necessary interpolations of the velocity from the computational to the advec
mesh andC field interpolations, conversely.

4.1. Computational Grids

4.1.1. Adaptive refinement near the interfacAdaptive mesh refinement (AMR) be-
comes quickly popular in multiphase methods [12, 54]. Recently, Jeong and Yang |
adopted adaptive refining through the refinement and mergence of elements on a quac
eral mesh. Greaves and Borthwick [24] developed a panel division or removal of eleme
on a Cartesian mesh, dependent on the vorticity magnitude. M. Sustrmbextended an
adaptive projection method to hierarchy of adaptive nested regular grids. In their work,
cells where the curvature exceeds a prescribed threshold were refined. Our purpose w
minimize the computational expense while maintaining a high levahdbrmrefining at
the domain of dependence of the interface. Our demand of the uniform refining comes f
the use of the finite difference normal estimation in the element centers and corners. T
not required in the reconstruction algorithms designed on the unstructured grids. Morec
we want to exclude at the present stage of a work with the aligned grids an additio
error which could appear from the approximations between the differently refined adap
subdomains. Also, the advantages of the adaptive refinement could be multiplied sh
the second-order interface reconstructions be used.

Assume tha€ is defined on aegular base mesk with step sizér equal to 2'o. Consider
its elemenk. Our refinement criterion is iffi(r)|| is different from zero for some cornér
of the given elemerk, we mark the elemerk itself for regular refinement, as well as its
neighbors which contain the given nodeThe regular marked element is subdivided into
four regularsonelements. When all regular refinements are done, some irregularly refir
elements are placed in their neighborhood to guarantee the closure of the grid (see Fig
and 3b).

The quantity of gas phase inside the finer element is estimated as the area of its intel
tion with the PLIC polygon constructed inside a father element. Since the vicinity of a
interfacial cell is regularly refined, the adaptive refinement procedure can be applied ar
After repeating il agap times, we obtain a hierarchy consistinglgfa, adaptively refined
grids. HereJaqap takes any prescribed or dynamically estimated value. The procedure
sults in a smooth expansion of the refined layers from the maximal adaptive level to b:
level.

4.2. Interface Aligned Grid

We are not making contrasts between aligned grids and AMR. On the contrary,
underline that these approaches supplement and amplify each other and we use them
There are examples when AMR alone cannot help to overcome the difficulties, for exam
in the case of Laplace law. The idea of an interface aligned grid is to completely sepa
the phases by the boundaries of the geometrical elements. This is fulfilled if the elen
face should lie along the reconstructed interface (see Fig. 3d). If the grid were alig!
with the PLIC, very narrow elements with large angles or high aspect ratios would app
following closure of the grid because of the discontinuity of the reconstruction (see Figs.
3f). When the interface is represented by a smooth curve, its piecewise approximation
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slope segment going through the intersections of the curve with the grid’s elements boun
gives rise to such an aligned grid (s€H]] in Fig. 5). The aligned grid is obtained with the
irregular refinement of the cells which are intersected by a curve. We refer below to t
simple grid adaptation to the front as “splirextifyinggrid” (see Figs. 3a—3c and 3Q).

The spline aligned grid may happen to contain “bad” elements which deteriorate 1
performance of the solution procedure. Similarly to [56], we have applied a simple reme
two nodes merge together if the distance between them is smalleethdgpically, we
have experimented with < 0.1. More effective methods are used in [40], where the internz
nodes have to be moved in order to improve the grid properties. The criteria on the leng
of the cells proposed very recently in [23] present the possibility of covering a region wi
a strong curvature by small elements.

4.3. Time Integration on Advection Mesh

Let initial conditionsi® and p° be given att = to. By using the initial distribution
CY, the first approximation to the solutiam*' is computed. Then, with the mean ve-
locity £(@° + G2Y), CO is advected to its new positio@/2. The solutioni®! is recal-
culated then withCAt/2, ThenC'*2Y/2 s used to discretize the governing equations ir
the time intervalt, t + At). In particular, deformable computational grids correspond t
CYAY2_ In numerical experiments with the rising bubbles we advabaen the regular
advection mesh, using a 2D geometrical split approach similar to one implemented in
SURFER code [26]. The advection mesh has a spacehsteg (o020 corresponding
to the maximal regular refining of the neighborhood of the interface on the computatiol
grid. In the case of the aligned grids, velocity is projected first on the underlying me
(uniform or adaptively refined), with help of the same transgrid operators as for soluti
procedure. Near the interface where the advection schemes are really active, no ful
velocity interpolation is needed. When the advection scheme needs a divergence-free
locity field outside the interface region, the interpolation to the insufficient point is done
follows.

Irregular refined elements are formally replaced by four regular son cells. Requiri
the velocity components lying on the edges of the new cells to be divergence-free in
sense of (11), they are locally computed from the velocity solution inside this eleme
This reconstruction from the irregular to regular sons is based on the relation (21). Fi
interpolation inside regulasoarsecells lying on the different levels lo < | < lg + ladap,
is done with the approximations [37], indirection foru, and iny direction foruy. This
approximation is piecewise constant along each edge and preserves the continuity proj
(11) forson elements. They are also used in[61] to interpolate the solution from the stagge
computational grid to finer advection mesh.

When new phase distribution is computed on the advection mesh, the mesh may
coarsened to obtain a new hierarchy of the adaptively refined grids. In practice we proc
as follows. First, we projec® on the base levéy and consequently construct the adaptively
refined grids as described above. Using again the regular refining near the interface,
volume fractions on the highest regular giridl = lo + laqap, are redefined as a copy from
the advection mesh. In this way, they correspond to the computed solution without :
approximations. The projection on the base level enables us to reconstruct the adaj
grid without coarsening of its previous elements. Whgn, > 1, C is redefined on the
underlying adaptively refined grids as a subsequent projection from the finer level. Wt
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using the flux based time integration schemes on unstructured grids, extension of (
criterion [22, 32] can lead to very small time steps because of the presence of the elen
with small characteristic lengths.

5. DISCRETIZATION OF BASIC EQUATIONS

5.1. Staggered Finite Volumes

To approximate Navier—Stokes equations with surface tension, we use finite volume
cretization based on the nonconforming Crouzeix—Raviart finite element [18]. The fin
volume approach helps us to separate the phases. Moreover, it deals with the fluxes dir
and in this way brings more control over them than the finite element approach. Sim
to the well-known staggered marker and cell distribution [28] of the discretization poin
the unknown pressure is located at the center of the element and the velocity variable:
found in the middle of its edges. However, in contrast to the MAC model, each edge cont:
bothcomponents of the velocity. This approach enables us to treat the basis equations i
same manner on structured (uniform) or unstructured grids. The velocity is considered t
piecewise linear (or bilinear) with respect to the so-called “rotated element” [48], which cc
nects the centers of the edges. The pressure is considered to be piecewise constant o\
element. The theoretical estimates [9, 18, 48] show that such approximations of the St
equation are stable; i.e., they satisfy the so-called discrete Babuska—Brezzi—Ladyzher
condition (BBS) and have the second-order convergence rates for the velocity compon
and first-order for pressure components. When the approximation of the convection ter
the Navier—Stokes equation does not spoil the properties of the stiffness matrix, neede
stability, the above results are also extended to Navier—Stokes equations. This discretiz
can be generalized also to 3D case following [9]. Unlike with a collocated approach [59]
a penalized formulation, since no additional coupling between the pressure and the velc
is needed [see (11), (20)], the continuity equation is satisfied exactly. This enforces n
conservation in advection schemes, especially if they are flux-based. When the eler
faces lie along a front, the correct description of pressure jumps follows since press
discretization points are not found on the element boundary. Below we briefly view t
main steps of the discretization procedure.

e With the finite volume method, mass conservation Eq. (2) is integrated over a con
volumeCV,(F) which coincides with the geometrical element with the cent@he Gauss
theorem reduces the integration to a boundary integral @%f,. Its approximation with
guadratures involves the velocity variabigsp) lying on the boundary of the element (see
pointsipg-i p3 in Fig. 4) as

> (@ -3plip =0, ip; €ICV,. (11)
i

Below, n, denotes the outer unit normal to the boundary segi@y, of a control volume;
S, is equal ton,, scaled with the length of the segment.

In order to discretize the Navier—Stokes equation (1), we integrate it over control volun
CV, () now constructed for each velocity discretization pdinfThe control volume is
subdivided into the subcontrol volum&&E\, eachSCVbelongs only to one geometrical
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quadrilateral element

triangular element \

rotated element

FIG. 4. Sketch for staggered non-uniform grid.

element (see Fig. 4). With the help of the Gauss theorem we represent Eq. (1) as

-

ou o N
pu/ — + puj{ Vnuds+j{ {p—2uD}n,ds
cy, ot ICV, ICV,

:pu/ @+/ Fe: V=U®0U. (12)
CcV, CcV,

e The pressure is assumed to be an elementwise constant function. Derssity
viscosityu are computed as a volume averaging inside each geometrical element:

p=Cpg+(1—-C)p; pn=Cug+@A-Cpu. (13)

The densityp, (') is derived from (13) by averaging over two subcontrol volumes sharin
the given velocity discretization poifit This averaging rises from a nonconservative form
chosen here. The conservative formulation requires a special effort to compute corre
the mass fluxes in case of large-density ratios on the boundary between the control volu
(see [61]).

Spatial velocity approximations are fulfilled on so-caltethtedelements [48]: the cor-
ners of the rotated element coincide with the velocity discretization points (see Fig. 4). |
the finite element (f.e.) approximation of arbitrary scalar or vector feiltside or outside
a given triangular/quadrilateral element be written as

¢™ M) =D Nj)¢;. (14)
j=1

Here,N; are standard linear/bilinear basis functiamss the number of the element corners.
While using (14), we will distinguish betweenf.e. interpolation over the geometrical eleme
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and f.e.rotatedinterpolation when basis functions correspond to the rotated element.
both cases, the gradients@fare represented as

Vo) =D VN;[F)g;. (15)

=1

The rotated f.e. interpolations (14)—(15) are used to compute the velocity and its gradien
integration points lying on th&CV,. Note that in the case of the interface aligned grid, whel
no phase mixture is presented by the relations (13), Eq. (12) with the relations (14)—(
enables us to satisfy the tangential conjunction condition (6) exactly on the reconstru
interface. In particular, stationary linear two-phase Couette flow is exactly described
any viscosity ratio and any inclination of the interface, provided that the interface is exac
reconstructed.
¢ If neither the equation of the interface nor its curvature is knomcan be applied

in the form (5) on any computational grid:

/ F*S:_]{ T-f,ds (16)
CV, ICW,

Following [34], we approximatés as|VC|. The components of the tensbrat the inte-
gration points are then computed with f.e. relations (14) from their nodal values, obtair
in the corners of the finest regular element to which the point belongs. If the interface
represented by a parametric splix€s), y(s)), the surface tension force over the interface
segmentA, B), lying inside the control volume (see sketch for Frenet formulas in Fig. 5
can be computed as

B / /
/ Ifszf okds=o(tg —ta); = X(s), y9) . 17)
v, A (X'2(s) + y'%(9))2

In the case of the staggered aligned grid, the intersection points @\thevith a spline
coincide with the corners of the grid elements by the construction. No extra effort is nee
to correctly discretize the pressure jump, compared to the situation that occurs in this ¢
on the regular grids (see [45]).

tE
C‘
D B
o .u tA
cv, A
E r

FIG.5. Sketch of bisection of spline with control volun@V, (r).
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5.2. Time Discretization and Discussion

The velocity in the continuity equation (11) is usually treated with an implicit Euler tim
approximation. Lety stand forp, D, orV in (12). Then, our time discretization can be
written in a general form as

Y=oty A oyl (18)

Here,a™ = 1, @~ = 0 for the implicit Euler scheme and vice versa for the explicit Eule
method;a™ = o~ = % for the Crank—Nicolson technique. Whef({i) is approximated
with the implicit schemes, a nonlinear system of equations arises. We solve it with 1
Newton method using a linear search technique. The Jacobian of the system is analytit
computed without any linearization of the convective term. The initial guess is the soluti
obtained at the previous time step or its approximation on a new computational grid. As
alternative treatment of the convection term, we linearize it with respect to time:

EAARTY ot uttat — gt
VAt by - AL (19)
au ot at At

The second-order time linearization scheme (19) preserves the stability properties of
implicit approach and avoids the necessity of solving the nonlinear system of equation:
The capabilities of staggered finite volume discretization have to be tested, first, in o
phase simulations. Because of space restrictions, numerical rate of convergence is co
ered here only for one of examples from [6]. The velocity figld= (—ay°/dy, d1¥°/dx),
Y0 = - 1sir? ny sir X is initialized inside the unit square domain. The velocity is equa
to zero at the boundary. Two cases are considered: Stokesfjgm=€ 0.1, convection term
is dropped) and Reynolds number 10/ = 0.01). Since no upwind approximation is
included in this paper, inviscid flow is not considered. In each case, we compute solution:
the regular gridsi{ = 1/2", n =4, ..., 8) with At = h/2 (CFL=1/2). Time discretiza-
tion of the pressure and the diffusion terms is done with the Crank—Nicolson scheme;
convection term is described with the relations (19) in the case ef R80. Table | displays
the order of the velocity approximatio/Uszn an/Un 2n, measured at tim& = 0.5. Here,
Uy 2n is theL, norm of the pointwise difference between the velocity solution obtained ¢
the grid with step B and the velocity projected from the finer grid. Velocity projection is
done with the relations (22). We observe asymptotical second-order convergence, wil
shows that we are in desired regions of stability and asymptotic approximations, at lea:
moderate Reynolds numbers.

TABLE |
Convergence Results for Single Vortex

Case 16-32 Rate 32-64 Rate 64-128 Rate 128-256
Stokes 6.41e-4 199 1.62e-4 199 4.07e-5 1.99 1.03e-5
Re=100 2.78e-2 1.72 9.3%e-3 191 259 -3 1.98 6.60e-4
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5.3. Solution Procedure

At each time step, the discretization described above leads to a saddle-point prok
(SPP) for velocity and pressure unknowns:

A B v f

(2 0)(5)-(s) e
Matrix A describedi-U coupling of the discretized momentum equati@addresses its
U-p counterpart; matriXBt denotes the discretization of the continuity equation. Althougl
the SPP brings more difficulties to the solution procedure compared with the solution
symmetric positive definite systems (SPD), they are well developed and the effectiver
of the modern state-of-the art algorithms is compared with the ones for SPD systems
In particular, the multigrid (MG) approach [8, 27, 68, 70] has been proven to be ve
effective for SPP; i.e., its convergence rate does not depend on the discretization parar
(number of unknowns) and the jumps of the coefficients, at least for “good” grids. T
“bad” grids, i.e., where the elements with big angles or high aspect ratios present,
result in bad convergence rates of the iterative solvers. This is true for the SPD as we
the SPP problem. There are approaches to overcoming this difficulty (algebraic multig
block preconditioner depending on the anisotropy). In our computations we do not use ¢
sophisticated procedures but, rather increase the number of smoothing steps.

In our work we use the V-cycle of the MG as a preconditioner for BiCGstab meth
[4, 58]. As the MG smoother, we use either SIMPLE transforming operator of Wittu
[70] or acollectiveGauss—Seidel technique following Vanka [67]. The prolongation of th
velocity component is done with the damped rotated f.e. relation (14). The prolongat
of the pressure component is constant elementwise. The restriction is computed as
transposition to the prolongation in both cases. In order to reduce the residual abeut :
10’ times, the typical convergence of BiCGstab observed in our computations was 5-
iteration steps on uniform and adaptively refined grids and 15-30 steps on the spline alic
grids, by using 1-4 pre- and post-smoothing iterations on each multigrid level. Acompari:
of two solution techniques ([70] and [67]) in different real problems and in functions
element properties is under study and will be reported in a separate paper.

6. TRANSGRID SOLUTION INTERPOLATIONS

Once the velocity field' is computed, the phase figld~1/?2V js advanced tg!+1/240
The new phase distribution requires the construction of a new computational grid unle:
is uniform. The discretization of the basic equations in the next time intéryah At)
requires the old solutiod! and, eventuallyp' at the new discretization points. The old
solution can be interpolated from the previous computational grid or prolongated fror
coarse grid which is not altered between two time steps. We discuss now some trans
operators used in computations presented below.

6.1. Velocity Approximation

Assume that the velocity solution is given at the discretization points of some comj
tational grid. The solutioni(F) at an arbitrary poinf can be computed by using the f.e.
relations (14) on the rotated element of the geometrical element \ihiee. Then, the
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averaging is done over all geometrical elements to which the point belongs. Below, we
this approximation scheme to interpolate the velocity from the old computational grid
new discretization points. The continuity equation (11) will not be generally satisfied |
the interpolated solution on a new computational grid.

6.2. Divergence-Free Velocity Restriction

Consider some father element and the set of its son elements lying on the finer ¢
Assume that the velocity in discretization poifitsof the son elements obeys (11). Since
any son velocity discretization point, not lying on the father boundary, belongs to two s
elements, the sum of the relations (11) over all son elements is reduced to the summg
over the son discretization points lying on the boundsy/, of the father element:

D (@3l =0, TiedCV,. (21)
k

We put the velocityl, defined at the edge of the father element, as equal to the weight
average of the velocity at son discretization pofitl/ing on the same edge

1
U= = = = < FOTh . s
’ > ISp T zk:(“SpHU)I 22)

Due to relation (21), the velocity (22) is divergence-free in the sense of (11) w.r.t. t
father element. Starting from the finest level and proceeding in this way, one can const
divergence-free fields on all underlying levels. We use this projection to compute the stiffn
matrix on coarse grids required for the multigrid technique and to advance the phase 1
on the underlying base mesh in case of the aligned grid.

6.3. Pressure Interpolation

We need the restriction of the pressure solution to coarser levels both for the multig
method and for its expansion to new discretization points. Projection of the pressure is s
ple: the arithmetical mean pressure value over all son elements is appropriated to their fa
In order to approximate the pressure in centers of new geometrical elements, we proce
follows. First, we approximate the pressure solution at the nodes of the old computatic
grid as the arithmetical mean of the pressure values over all elements which share the ¢
node. Then, we project this nodal solution to all coarser levels. Once a hierarchy of r
grids is reconstructed, the nodal solution is interpolated from the finest unalterable le
into the son nodes with f.e. relations (14). The solution at the new discretization poir
i.e. the centers of new elements, is computed as an arithmetical mean value of the n
solution. The procedure is then successively repeated for subsequent finer levels.

7. LAPLACE LAW

The validation of the Laplace law for a stationary bubble represents a well-known tes
surface tension methods. At equilibrium, the pressure jump across the interface is rel:
to its radiusR according to (6)

(23)

o
Pin — Pout = R
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FIG. 6. Anomalous currents (b) on the grid (a) aligned with the exact circle. The surface tension force
computed in momentum conserving form (16), (5).

Here,pin andpoyt are pressure values inside and outside the bubble. Vi, setd po,: to be
equal to a weighted mean value computed over all elements lying completely inside or
side the bubble; the weight coefficient is equal to the element area. Well-known numer
artifacts, called in the literature “anomalous” or “spurious” currents around a macroscc
cally static bubble, are typical for VOF models. In order to demonstrate that the anomal
currents originate from a bad approximation of the surface tension term, we consider
two following experiments. The physical data are given in lattice units in this section.
First, we rectify a circle of the radiuR = 0.2, centered in the unit square, bg@antinuous
linear interface. The aligned grid follows this reconstruction, as displayed in Fig. 6a. Bc
fluids have the same densities and viscosities equal to one. The surface tensiég foitte
o = lis applied in both forms: conservative [(5) and (16)] and exact [(17)]. The amplitu
of the anomalous currents, m@x||), and measurements of the Laplace law are given i
Table Il. The behavior of the currents on the aligned, adaptively refined or regular gr
is similar when the relations (5), (16) are used: @i@y) is proportional tos/u, and it
varies weakly if the space resolution increases. This follows the same lines as the re:

TABLE Il
Results for a Static Bubble

Amplitude of the anomalous currents

Fs: rel. (16), (5) Fe:rel. (17)

h Exact circle Exact circle Spline B Spline C
1/16 00413 867 x 10°° 1.00x 102 1.64x 1073
1/32 00293 922 x 10°° 6.00x 10°° 1.89x 10
1/64 00289 123 x 1078 176 x 1073 4.89x 10°°

Laplace lawi(p;, — Po) £ =1
1/16 0936 10 100282 0999905
1/32 0969 10 100087 1000010
1/64 0988 10 100019 1000000
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in [34, 35] where the anomalous currents obtained with finite difference approximations
relation (16) on uniform grids stay constant when space resolution increases. In this v
one cannot benefit from the adaptively refined grids.

Onthe other hand, since the pressure gradient across the interface is correctly describ:
the aligned grid where phase separation inside of a control volume is done by the boun
between two elements, the anomalous currents vanish when relation (17) is used
the exact curvature and exact values of normal vegtt@onsequently, an exact pressure
distribution (23) is obtained in this case (see second column in Table II).

Second, we construct the cubic spliig@andC, corresponding to the volume fraction
distribution for a circleR = 0.2. In order to fixspline G we iterate the solution of the
nonlinear problem until the curvature at the nose becomes equal to one at the neighbc
point. Feis implemented then in the form (17) on the spline aligned grids.

Rudman [61] and Aleinov and Puckett [2] do not comment on how much the amplitu
of the currents is reduced with their approaches. Williatred. [69] reduce them by factors
of 3 to 5, using an approach similar to [2, 6]. Table Il shows that the amplitude of t
spurious currents is reduced by a factor of 20-50Gpline Cand by a factor of 4-10
on spline B, even on relatively coarse grids. The currents are better reduced in case
the mass conservirgpline C In both cases, the current strength decreases with the spat
resolution. These results confirm the ability of cubic spline aligned grids to represent:
surface tension accurately.

8. RISING BUBBLES

8.1. Dimensionless Parameters

The rising bubbles are often classified in terms of the following group of dimensionle
parameters: the Reynolds number Re, the Froude number Fr, and the Weber number \

Re=pLU/w, Fr=U?%gL, We=pLU?/o, (24)

whereU is the steady state bubble velocity. On the other hand, the descriptions in term:
the Reynolds, the &V6s numberEy, and the Morton nhumbeyl are also widespread:

Eo=gnd’/o, M =gu/po> (25)

Here,d = 2R, Rbeing the bubble radius. In order to introduce the first group, let us rewri
Eqg. (1) in the following dimensionless variables:

X' =x/L.t'=tU/L, U =0/U, p' =p/(nU?.p = p/pandy’ = p/w. (26)

If we substitute (26) into (1) and drop the primes, it becomes
GV L G 1 Fs 1

—+V-U®u) ==+ —-[-V — 4+ —V.(2uD)]. 27

L Fr+p[ P+we T Ra' (1D (27)

The dimensionless density and viscosity outside the bubble are equal tg,deeg unit

gravitation vector. When it is not specially indicated, we compute the parameters (24) w
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L = 2R. If U is put equal to'Lg)*?, then We turns out to be theoE/ids numberE, and
Re becomes equal to Re

Rey = (2R)? /g /1. (28)

A dimensionless combination of these parametEggRe], yields the Morton numbe!.
On the other hand\ is We¥/(Re*Fr) and Eq is We/Fr whenL = d. In fact, the Btvos
number is a dimensionless size of a bubble; it belongs to the int@@ad, 10°). The Morton
number depends only on the properties of the liquid; it varies strongly depending on
viscosity of the surrounding phase, from16for liquid metals up to 1®in viscous oils.
The parameters of an air bubble in watgy & 1.137 x 1072 g/(cm s),p, = 1.0 g/cn?,
o = 72.8 dynes/cm) give rise tdl = 4.25 x 1071, In [63, 66], the reader can find an
exhaustive list of the literature concerning numerical simulations of a single bubble.

8.2. Numerical Experiments

If not specially indicated, the conditions of the calculations are as follows. The dimens
ofthe boxis 1x 2 cm; the initial bubble radius R = 1/6 cm; the start position of its center
is at(0.5 cm 0.75 cm); g = 980 cnys?; the density of the liquigh = 1.0 g/cnr. Bubble
velocityU is computed from the change in the position of the bubble nose using the cen
differential in time. After the advection step, if necessary, we adjust be in the interval
(0,1). This may result in total volume (anas$ violation, otherwise preserved by the
algorithm. The relative losM'®" (t) of the total mas#a of the gas phase is defined as

Ma(t = 0) — Ma(t)

rel. _
M= O = Ma(t = 0)

(29)

The time step satisfies the CFL condition on the advection mesh(ﬂm@% < %) and
the restriction given by Brackbidit al.[13], coming from the stability condition at capillary
level.

An implicit Euler time discretization is used in both conservation relations (11) ar
(12). No upwind approximation is used. The convection term is discretized with relati
(19). We have not found any noticeable difference between these solutions and imp
Euler discretization, at least for the medium range Reynolds numbers under considera
Surface tension force is implemented in the exact form (17) on the spline aligned grids
on the adaptively refined grids used in Section 8.2.4. Important here is while computing
surface tension in a form (16), (5), the solution was destroyed by the anomalous curren
this last experminent. Implementation of the surface tension on the cubic splines helpe
to obtain the stable solutions.

8.2.1. Study of the interface interpolantdie consider here a relatively large bub-
ble with Eg = 40.1 andM = 125. Other dimensionless parameters of the experiment a
Rey = 4.77,Re= 0.88, We= 1.4, o/ pg = 40,1/ 11g = 88. The streamlines at the steady
state are shown in Fig. 8 in reference frame moving with the bubble. Mass viosuing
B and mass conservirgpline Care used to represent the interface, whereas the solution
obtained on a regular 32 64 grid. Spline Cis fixed in the same manner as in Section 7
for the case of a stationary bubble. We show in Fig. 7 that even in the case of the smq
bubble shape variatiospline Chappens to oscillate more thapline B We suggest that
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FIG. 7. Mass violatingsplines B(bottom row ) and mass conservisglines C(top row) in caseM = 125
Eo = 401, 12 //,Lg = 88.

the best mass conserving spline should be one with the minimal curvature. Computing
surfaces of minimal curvature [12, 15] is based on the idea that while evolving with t
speed equal te-x (« being a local curvature), the surface will come to a “minimal” surface
In [15], the surface is attached to a fixed “frame.” In our case, we conjecture that a fra

p/pg =1 i/ pg = 88

FIG. 8. Streamlines in case of rising bubble with = 125 E, = 40.1.
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could correspond to a moving set of points which satisfy the nonlinear system of equati
for mass preserving spline. Should our conjecture succeed, that the best mass conse
spline is one with the minimal curvature, no additional criterion will be needed.

In all simulations below, we align the grid to the interface approximatediyne B
We confirm that even in the case of strong deformations, the relative mass violation cat
by spline Bon rather coarse gridé (= 27°) is less than 1%. On the other hand, the mas
violation induced by the “spline rectifying” on the aligned grid has usually the same orc
of magnitude whether it is fitted to spline Bor to spline Cinterface interpolant. Thus,
if no finer approximation to the spline interface is done by the subsequent refinement,
reconstruction of the interface witpline Bis justified from a practical point of view. In
the simulations presented below, cubjaines Bare found smooth enough to ensure an
accurate evaluation of the curvature. The convergence rates of the normal and curv:
estimations obtained frospline A spline B andspline Cinterpolants have to be compared
with the results presented in [2, 42, 53] and further studied for distorted interfaces as w

8.2.2. First experiment. Buoyant two-dimensional bubbles with three differeot s
numbers:Eg = 1, Eg = 10, andEp = 104 are modeled by Unverdi and Tryggvason [66]
with a front-tracking method. They use a finite difference MAC-type discretization on
65 x 129 regular grid. Four experiments with differdvitare considered for eadfy. The
Morton numberM decreases with the fluid viscosity, whereas the bubble viscosity
and the density ratio are kept constantysfu.q decreases from the calculations with higher
to smallerM.

Here, we calculate the bubbles with the safeM, /g, andp/pg = 40 as in [66];
free-slip boundary conditions are used. The results are shown in Figs. 9 and 10. All calc
tions, except those of the skirted bubbles, are dorsptine Baligned computational grids,
constructed over 32 64 regular mesh. Skirted bubbles displayed in Fig. 10e are obtain
on aregular 64« 128 regular grid while the spline technique has not yet been implement
to deal with the reconnection. The time step= 5 x 10> s except for Fig. 9b where it is
doubled. Relative massloss (29) is giveh at 0.06 s. When the moving is done on the same
mesh and with the same time stéll™" | ncreases with Re (cM™! in cases (c) and (d)).

Atthe steady state, bubble shapes and streamlines are found in good qualitative agree
with the results displayed in Figs.3 and 4 in [66]. Consider first small bubbles or the bubk
with high surface tension wheB < 40. Following the classification in [14], they are
found in a spherical or ellipsoidal regime (see Fig. 9 and Table IIl).Epe 1, the top
of the bubble becomes slightly flatter than the back and the wake appears due to stro
deformation wherM decreases. This corresponds to the steady state axisymmetric she

TABLE 11l
Parameters for First Experiment

w/wg Eo M Re Re  We Mre!
@ 88 1 107 5623 42 058  20x10*
(b) 493 1 10 10 446 02 52x10°
© 8 10 10% 5623 2155 147 53x 10°
d 493 10 10° 10 35 118  28x10°
e 85 104 10' 579 225 156  -13x10°

(f) 479 104 16 103 358 1253 22 x10°
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FIG. 9. Rising bubbles withg, = 1 (a, b) andg, = 10 (c, d). Further details are given in Table III.
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FIG. 10. Rising bubbles witlE, = 104. Further details are given in Table IlI.

drawn by Ryskin and Leal [55, Fig. 2]. Oblate ellipsoids obtainedEet 10 are in close
agreement with [66]; wheM decreases, the separation occurs at the rim of the ellipso
and “egg-shaped” closed wake appears behind it.

If Eo > 40, the bubbles are found in spherical cap regime. When Re increases,
bubbles change likewise from oblate ellipsoidal to the oblate-ellipsoidal cap shapes,
then to the spherical-cap shapes (see photos presented by Bhaga and Weber [10, F
and 3]. Large bubbles in highl systems at Re of order 10 to 50 can develop thin annule
films of dispersed fluid, usually referred to as “skirt.” Skirted bubbles are studied by Hr
and Buckmaster [30]; in their experiments, the values We/Re2 imply the appearance
of a skirt for Re> 9. Although this criterion is not satisfied by the 2D bubble displayed i
Fig. 10e, the skirt partially envelopes the wake similar to the idealized skirted spherical
bubble drawn in Fig. 2 in [30]. The wake structures agree with the schematic wake diagi
for skirted bubbles (see [14, Fig. 8.5]): internal circulation consists of two vortexes wh
toroidal vortex develops behind the bubble.

8.2.3. Second experimentLarge gas bubbles are modeled with the axisymmetric leve
set method in the recent work of Sussman and Smereka [63]. Their dimensionless
rameters, calculated with = R, coincide with the experimental parametersdabble A
andbubble Cin Table | of Hnat and Buckmaster [30]: Re9.8, Fr= 0.76, We= 7.6 and
Re= 244, Fr=0.88 and We= 27.2, accordingly. In both caseg,q/u = 0.0085 and
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pg/p = 0.0011. Both bubbles have the same Morton numbkef 0.065) and equal sur-
face tension coefficient. Their volumes are different and correspondgg= 39.3 and
Eo = 1231, respectively.

We consider here two bubbles of the same rad®us 1/6 cm but with differento.
Morton and Btvos numbers coincide with the data given abayé=5 x 107° s. Since
our experimentis two-dimensional, the steady state nose veldé#tiess than the expected
valueU?3d in the 3D caset)3d = (FrgR)2. Consequently, the Reynolds numbers of the
current experiment differ from those in [30, 63]. The evolution of the bubbles is display
in Figs. 11 and 12. The form of the wakes outside the bubbles agrees with the experime
data (see [30, Fig. 1]). In agreement with Bhaga and Weber [10], in the intermediate ti
the lower edge becomes sharper if Re increases. The bubble shapes agree quite well wi
evolutions presented in Fig. 4 and Fig. 6 in [63] (here, the time values are different beca
of the difference in rise velocity). Similar to the results of Sussman and Sméxdiale C
develops the skirts and then continues to rise with nearly the constant speed at the
as expected from the experimental measurements (see [10, 14]). Rise veldibhbté C
is shown in Fig. 13. The skirts break off and travel behind the bubble. This behavior
similar to the motion of the large bubble displayed in Fig. 10e which has &gsad M
values.

Collins [16] derives the velocity of a two-dimensional spherical capped bubble risir
along the axis of a channel of finite widtl 2s

b 2 c
ud = g—(S—tanh?a)tanha .« e
T

=3 (30)

Here Z is the length of the body. Collins shows that umfib exceeds @, cis equal to the
radius of curvature at the front stagnation painin order to comparel with the predictions
(30), no-slip boundary conditions are used. The radius of curvatisrestimated by fitting a
circle through interface points closest to the nose. We ohbtain6.37 cnys,a = 0.298 cm,
U2~ 6.849 cny's for bubble AandU = 6.39 cm/s,a = 0.33 cm,U?® ~ 6.958 cm/s for
bubble C We believe that the discrepancy with the prediction (30) may be related to t
inaccuracy in curvature estimation. Moreover, the no-slip boundary condition on the tog
the box can slow the flow. Besides, the steady shapes of the obtained bubbles still rese
more the oblate—ellipsoidal cap than the spherical cap.

If the moving is done on the same advection mesh, bubble shapes obtained on the re
and adaptively refined grids practically coincide (see Figs. 11 and 12). They are in cls
agreement with the shapes obtained on the aligned grid in the cahsblag A(cf. middle
and bottom rows in Fig. 11). In the caselmfbble C some difference appears between the
shapes when the skirts develop (see middle row in Fig. 12). Indeed, we usually see tha
indentation at the rear is a bit less developed on the aligned grids. This may be related tc
fact that the interfacial cells are treated differently during the discretization on regular ¢
aligned grids. Moreover, the skirts look thicker and mass is preserved better on the alig
grid since its corresponding advection mesh (underlying regular mesh) is coarser tha
the case of nonaligned grids, but equal time steps are used in all computations.

8.2.4. Third experiment.Bubblesthatrise in viscous liquids have been studied by Bhag
and Weber [10]. They have found that fist > 4 x 103 and Re< 110, a closed toroidal
wake develops behind the bubble. For R4 10 the wake appears to be open and unstead
In their work, Bhaga and Weber show the steady shapes and the streamlines around r
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Rise velocity (cm/s)
10.0 ; —

time(s) |
"000 002 004 006 008 010 0.12 = 0.0955

20 20 20 20 20
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T

= = -
1=0.02s t=0.04s t=10.06s t=0.08s 1=0.095s

FIG. 11. Evolution of bubble A pg/u = 0.0085 pg/p = 0.0011 Eq = 39.3, M = 0.065 Re, = 31.1,
Re= 11, We = 4.9. Bottom row: Aligned computational grids in course of motion. Middle row: Cubic spline:
correspond to computations on regular6428 mesh (dashed line) and adaptively refined grid (solid line), whick
is constructed over 32 64 regular mesh. At= 0.06 sM'™" on the aligned, adaptively refined, and uniform grids
is—9.45x 1075, 2.32 x 1075, and 273 x 1075, respectively. Top row: Rise velocity is plotted in time. Streamlines
are shown at steady state.

bubbles in four situations with decreasik(see Fig. 19 in [10]: it corresponds to cases (a)
(d), (), (g) in their Table 3). The Morton number decreases with the viscosity of the liqui
from M = 848 to the critical valu/l,, = 4.63 x 10~2, which is relatively high since very
viscous liquids are used. In this section, we take= 1.314 g/cni and p; /pg = 10905,
corresponding to aair bubble (g = 1.78 x 10~%) in liquids [10]. We show in Figs. 14a
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t=0.08s t=0.1s

1=0.06s

a0 a0 20

0.0
o'ﬂﬂ.ﬂ os 1 n“n.n o5 10 00 o5 1.0

1=0.02y5 t=0.04s t=10.05s

FIG. 12. Evolution of bubble C j4/p = 0.0085 pg/p = 0.0011 E; = 1231, M = 0.065 Rey = 73.2,
Re= 259, We = 15.4. Bottom row: Cubic splines correspond to computations on the regulari&8 mesh
(dotted line), the adaptively refined grid (solid line), and the aligned grid (dashed line). Middle row: Phase c
tribution is displayed on the aligned, adaptively refined, and regular mesh. The correspondingw4lzee
—1.82x 1075, —6.73 x 10°°, and—6.56 x 10°°. Top row: Further motion of the skirted bubble is done on the
adaptive grid.
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FIG. 13. Rise velocity ofbubble C

and 14b and Table IV the evolution of an air bubble in liquids used by Bhaga and Weber
two Morton numbersM = 848 (i /ig = 1.5 x 10°)andM = 5.51 (/g = 4.2 x 10%).
The solutions for an air bubble & = 0.103 (/g = 1.5 x 10*) andM = 4.63 x 1073
(/g = 7184) are obtained on the aligned grids up to the moment when the skirts br
off. The computations on the aligned grids are performed withRfén the form @a).
WhenFs is computed in the conservative form (5), (16), the parasite currents quickly gr
because of the small bubble viscosity and destroy the interface, whether the grid is alig
to the interface or not. If the bubble viscosity increases, we reach the stable solution
these cases (see Figs. 14c, 14d and the corresponding viscosity jumps in the legend).

As the alternative approach, we discretize on the cubic spline interpolants also in
the case ohonaligned gridsFor this purpose, we use the relations (17) for each pair c
points defining the intersections of the culsigline Bwith the boundary of the control
volume. Then, stable solutions for air bubbles are obtained for all considi&meambers
as in the case of the aligned grids. This is demonstrated in Figs. 14b and 15. Up to r
no special account of the interface position is included during the discretization of t
pressure gradients on nonaligned grids. Nevertheless, computing with the spline interpol
considerably diminishes the anomalous currents on them.

The bubble shapes and the behavior of the surrounding liquid qualitatively agree with
experimental results. The bubbles take oblate ellipsoidal cap shapes. The spherical cap
is notyetreached in case (d), unlike in the experiment of Bhaga and Weber, since the atte
Reynolds numbers are smaller than in real 3D experiments. A strong indentation at the

TABLE IV
Parameters for Third Experiment

/g Eq M Re Re We At(s)
(a 15x10° 116 848 655 169 7.75 1x10*
(b)y 42x10* 116 551 231 793 1372 5x 10°°
©) 250 116 0103 624 2209 1454 5x 107

(d) 100 115 463 x 10° 1346 4775 1446 25x 10°
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(a)

(b)

(d)

T

e
t=0.03s t=0.045s t=0.09s

I

FIG. 14. Eo6tvds and Morton numbers correspond to the experiment of Bhaga and Weber. The evolutior
the bubbles is modeled with the rotated discretization. (a) Aligned grid; (b—d) Adaptively refined grids.
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t=10.09s t=10.09s t=0.05s t=0.045s

20 20 290 20

lolAalal

a0 0.0 0.0
00 [ 1000 05 1000 05 1000 0.5 1.0

(a) (b) () (d)

FIG. 15. Bubble shapes are obtained with the rotated (solid line) and MAC (dashed line) discretizatio
(a—d): E and M correspond to Fig. 14y /iq corresponds to air bubble .@lx 1%, 4.2 x 10%, 1.5 x 10%, and
7184, accordingly). Rotated discretization: Spline B aligned grid fitted over 82 regular mesh in case (a),
adaptively refined grids otherwise. MAC discretization is done on regular gridg:@Rin case (a), 64 128
mesh in other cases.

during the motion results in the appearance of closed toroidal wakes. Bhaga and Web
the frontal surface of the bubble and compare the boundary of the wake with the boundat
an ellipsoid in the case of an oblate ellipsoidal cap. We find that the wake grows continuot
when going from smaller to higher Re. The wake is greater in vertical direction than t
frontal ellipsoid, except for the smallest Re. In this way, the study of the wakes provic
results similar to the experimental measurements. The bubbled$iniths.51,M = 0.103,
andM = 4.63 x 10~3 are skirted. This is not the case in the physical experiment, but
corresponds to the previous numerical computations of large bubbles (see Figs. 10e an
as well as to the results obtained with our MAC-type description, discussed below.

For a comparison, the MAC-type central finite difference (f.d.) approximation of Egs. (
and (2) on a regular grid was implemented. Explicit as well as implicit time discretizatio
can be used to treat both convection and diffusion terms. A linear saddle point probl
is solved for all unknown pressures and velocities, similar to the current discretizatis
Surface tension is implemented with a f.d. approximation of (5), following [26, 34].
should be underlined that this discretization remains stable also for a small bubble viscc
in all experiments discussed in this section. The interface shapes, plotted with the ci
spline interpolant, are compared in Fig. 15. In case (a) of the smallest Re and the gre:
viscosity ratio, the small difference in bubble shapes is mainly related to the difference
the discretizations on the regular and aligned grids. The skirts agree quite well in the r
three experiments where we mainly attribute the difference to the different treating of
surface tension force. This is confirmed by the computations in the cases shown in Figs.
and 14d, when the relations (5) are used in both discretization schemes. Finally, we dc
think that the advection schemes are responsible for the skirt formation in our model si
our preliminary computations with the unsplit advection scheme [54] provide very clo
results. Remarkably, the 2D level set method [62] and axisymmetric level set method |
also exhibit a tendency to form skirts.
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9. CONCLUSION

We have introduced a two-dimensional two-phase model based on an implicit fin
volume discretization of the Navier—Stokes equations on unstructured computational gr
which either adaptively refine the interface or produce a grid that is aligned with it.
computations with the interface aligned grids, the jumps of the pressure and the contin
of the viscous stresses are kept on the front. Another important advantage that we see |
ability to accurately compute the surface tension force on cubic spline aligned grids.
show thatthe anomalous currents disappear when the interface is represented by a true ¢
They are significantly reduced by using spline aligned grids. Staggered finite volumes
the construction of the adaptive/aligned grids can be extended to 3D and to fully unstructt
mesh in a straightforward manner based on 3D elements [9] and the development [22
54] of VOF algorithms designed on the unstructured mesh, respectively. The reconstruc
of the interface as spline interpolant in a 3D case can be done with parametric non-unifi
rational B-splines (NURBS) surfaces [35], due to their flexibility in local choice of the
rational polynomials (i.e., quotients of two polynomials). In particular, parametric surfac
can represent spheres, ellipsoids, and many other surfaces. An algorithm which compg
a control point configuration closest to the given one, such that the free form solids cont
volumes of the given sizes, is presented in [49]. The method [49] can use NURBS b:
functions as well.

Spline interface reconstruction also enables us to reduce considerably the anoma
currents in VOF models, even if they are based on regular grids. Taking into account
interface position and the jumps on it while discretizing the pressure gradients should re
in further improving the accuracy on such a grid. The combination of high-order upwindii
methods with staggered finite volumes is necessary for real air/water computations v
small Morton and high Reynolds numbers. We are currently working on solution techniqt
for saddle-point problems more tuned to interfacial problems. Our current constructior
the aligned grids is done locally and the symmetry is preserved. We benefit at the advec
step from the fact that the grid underlying the aligned grid or the adaptively refined g
itself is regularly refined near the interface. When an approximation of boundary conditic
at the boundaries of the domain needs to use the unstructured grids already at the low le
or when a strong distortion of the interface needs to use a nonregular adaptive strategy,
generators can be employed in two as well as in three dimensions to construct the sequ
of grids approximating the front. Also, advection schemes based on spline interpols
rather than on the PLIC method, could be developed in the future.

Althoughthe currentrepresentation of the interface is based on the VOF method on reg
grids, the model can work with other front descriptions. In particular, one can reconstr
the zero level set from the level set function provided by the level set approach. Then
model will combine such advantages of the last method as front advection via the solutiol
a PDE and the handling of interface merging and reconnections, with the versatility of fin
volumes and finite elements on unstructured grids. Finally, our solution procedure d
not use projection methods, but solves the entire linear system for the unknown press
and velocities. In this way, a change in the time discretization scheme does not affect
solution method. Since the necessity to use the implicit schemes for the convection tert
two-phase computations with strong surface tension and/or flux-based advection algorit
is not obvious, the model could benefit from the projection methodology when combin
with the finite element discretizations on the interface aligned grids.
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